Class to represent the Novelty Search Algorithm.
More...
#include <NoveltySearch.h>
|
| NoveltySearch (unique_ptr< Distance< float >> dist, const float &threshold=2000, const float &finalThresh=0.0001, const int &k=15) |
| Creates a new Novelty Search instance. More...
|
|
Front< S > | getResults () override |
| Returns the results obtained by the Novelty Search in a Front object. More...
|
|
vector< S > | run (vector< S > &population, const Problem< S > *problem) override |
| Novelty Search Algorithm It looks for novelty using the genotypes of the individuals in the population. Computes the sparseness of each individual in the noveltyArchive and population. More...
|
|
virtual void | cmpFinals (vector< S > &population, const Problem< S > *problem=nullptr) |
| Compares the individuals in the population against the neighbors inside the archive of final Ss. If the score is good enough the individual will be included inside the archive of final solutions. More...
|
|
virtual void | insertIntoArchive (const S &solution) |
| Method to insert a new individual into the noveltyArchive of novelty solutions. More...
|
|
const vector< S > & | getArchive () const |
|
virtual json | to_json () |
|
float | getThreshold () const |
|
float | getK () const |
|
float | getFinalThresh () const |
|
| Search ()=default |
| Constructs a default Search.
|
|
|
virtual vector< Descriptor > | beforeRun (const vector< S > &population) |
| Performs computational work necessary for running the NS This method creates a combined population using the individuals from the NS archive and the population. The resulting vector contains the features of each individual. More...
|
|
virtual vector< Descriptor > | beforeCmpFinals (const vector< S > &population) |
|
virtual void | insertFinal (const S &solution) |
| Method to insert a new individual into the final set of solutions The default behaviour is to get all the variables of the solution. More...
|
|
|
unique_ptr< Distance< float > > | distance |
|
vector< S > | noveltyArchive |
|
vector< S > | finalSs |
|
vector< Descriptor > | finalSsDesc |
|
float | threshold |
|
float | finalSThreshold |
|
int | k |
|
template<typename S>
class NoveltySearch< S >
Class to represent the Novelty Search Algorithm.
- Template Parameters
-
◆ NoveltySearch()
Creates a new Novelty Search instance.
- Template Parameters
-
- Parameters
-
◆ beforeRun()
template<typename S >
vector< Descriptor > NoveltySearch< S >::beforeRun |
( |
const vector< S > & |
population | ) |
|
|
protectedvirtual |
Performs computational work necessary for running the NS This method creates a combined population using the individuals from the NS archive and the population. The resulting vector contains the features of each individual.
- Template Parameters
-
- Parameters
-
Reimplemented in NSPerformance< S >, and NSFeatures< S >.
◆ cmpFinals()
template<typename S >
void NoveltySearch< S >::cmpFinals |
( |
vector< S > & |
population, |
|
|
const Problem< S > * |
problem = nullptr |
|
) |
| |
|
virtual |
Compares the individuals in the population against the neighbors inside the archive of final Ss. If the score is good enough the individual will be included inside the archive of final solutions.
- Template Parameters
-
- Parameters
-
◆ getResults()
Returns the results obtained by the Novelty Search in a Front object.
- Template Parameters
-
- Returns
Implements Search< S >.
◆ insertFinal()
Method to insert a new individual into the final set of solutions The default behaviour is to get all the variables of the solution.
- Template Parameters
-
- Parameters
-
Reimplemented in NSFeatures< S >, and NSPerformance< S >.
◆ insertIntoArchive()
Method to insert a new individual into the noveltyArchive of novelty solutions.
- Template Parameters
-
- Parameters
-
◆ run()
Novelty Search Algorithm It looks for novelty using the genotypes of the individuals in the population. Computes the sparseness of each individual in the noveltyArchive and population.
- Template Parameters
-
- Parameters
-
- Returns
Implements Search< S >.
The documentation for this class was generated from the following file: