@File : tsp.py @Time : 2025/02/21 10:47:31 @Author : Alejandro Marrero @Version : 1.0 @Contact : amarrerd@ull.edu.es @License : (C)Copyright 2025, Alejandro Marrero @Desc : None

TSP

Bases: Problem

Symmetric Travelling Salesman Problem

Source code in digneapy/domains/tsp.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
class TSP(Problem):
    """Symmetric Travelling Salesman Problem"""

    def __init__(
        self,
        nodes: int,
        coords: np.ndarray,
        seed: int = 42,
        *args,
        **kwargs,
    ):
        """Creates a new Symmetric Travelling Salesman Problem

        Args:
            nodes (int): Number of nodes/cities in the instance to solve
            coords (np.ndarray(N, 2)): Coordinates of each node/city.
        """
        self._nodes = nodes
        if coords.shape[1] != 2:
            raise ValueError(
                f"Expected coordinates shape to be (N, 2). Instead coords has the following shape: {coords.shape}"
            )
        if not isinstance(coords, np.ndarray):
            coords = np.asarray(coords)

        self._coords = coords
        x_min, y_min = np.min(self._coords, axis=0)
        x_max, y_max = np.max(self._coords, axis=0)
        bounds = list(((x_min, y_min), (x_max, y_max)) for _ in range(self._nodes))
        super().__init__(dimension=nodes, bounds=bounds, name="TSP", seed=seed)

        self._distances = np.zeros((self._nodes, self._nodes))
        differences = self._coords[:, np.newaxis, :] - self._coords[np.newaxis, :, :]
        self._distances = np.sqrt(np.sum(differences**2, axis=-1))

    def __evaluate_constraints(self, individual: Sequence | Solution) -> bool:
        counter = Counter(individual)
        if any(counter[c] != 1 for c in counter if c != 0) or (
            individual[0] != 0 or individual[-1] != 0
        ):
            return False
        return True

    def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
        """Evaluates the candidate individual with the information of the Travelling Salesmas Problem.

        The fitness of the solution is the fraction of the sum of the distances of the tour
        Args:
            individual (Sequence | Solution): Individual to evaluate

        Returns:
            Tuple[float]: Fitness
        """
        if len(individual) != self._nodes + 1:
            msg = f"Mismatch between individual variables ({len(individual)}) and instance variables ({self._nodes}) in {self.__class__.__name__}. A solution for the TSP must be a sequence of len {self._nodes + 1}"
            raise ValueError(msg)

        penalty: np.float64 = np.float64(0)

        if self.__evaluate_constraints(individual):
            distance: float = 0.0
            for i in range(len(individual) - 2):
                distance += self._distances[individual[i]][individual[i + 1]]

            fitness = 1.0 / distance
        else:
            fitness = 2.938736e-39  # --> 1.0 / np.float.max
            penalty = np.finfo(np.float64).max

        if isinstance(individual, Solution):
            individual.fitness = fitness
            individual.objectives = (fitness,)
            individual.constraints = (penalty,)

        return (fitness,)

    def __call__(self, individual: Sequence | Solution) -> tuple[float]:
        return self.evaluate(individual)

    def __repr__(self):
        return f"TSP<n={self._nodes}>"

    def __len__(self):
        return self._nodes

    def __array__(self, dtype=np.float32, copy: Optional[bool] = True) -> npt.ArrayLike:
        return np.asarray(self._coords, dtype=dtype, copy=copy)

    def create_solution(self) -> Solution:
        items = [0] + list(range(1, self._nodes)) + [0]
        return Solution(variables=items)

    def to_file(self, filename: str = "instance.tsp"):
        with open(filename, "w") as file:
            file.write(f"{len(self)}\n\n")
            content = "\n".join(f"{x}\t{y}" for (x, y) in self._coords)
            file.write(content)

    @classmethod
    def from_file(cls, filename: str) -> Self:
        # TODO: Improve using np.loadtxt
        with open(filename) as f:
            lines = f.readlines()
            lines = [line.rstrip() for line in lines]

        nodes = int(lines[0])
        coords = np.zeros(shape=(nodes, 2), dtype=np.float32)
        for i, line in enumerate(lines[2:]):
            x, y = line.split()
            coords[i] = [np.float32(x), np.float32(y)]

        return cls(nodes=nodes, coords=coords)

    def to_instance(self) -> Instance:
        return Instance(variables=self._coords.flatten())

__init__(nodes, coords, seed=42, *args, **kwargs)

Creates a new Symmetric Travelling Salesman Problem

Parameters:
  • nodes (int) –

    Number of nodes/cities in the instance to solve

  • coords (ndarray(N, 2)) –

    Coordinates of each node/city.

Source code in digneapy/domains/tsp.py
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def __init__(
    self,
    nodes: int,
    coords: np.ndarray,
    seed: int = 42,
    *args,
    **kwargs,
):
    """Creates a new Symmetric Travelling Salesman Problem

    Args:
        nodes (int): Number of nodes/cities in the instance to solve
        coords (np.ndarray(N, 2)): Coordinates of each node/city.
    """
    self._nodes = nodes
    if coords.shape[1] != 2:
        raise ValueError(
            f"Expected coordinates shape to be (N, 2). Instead coords has the following shape: {coords.shape}"
        )
    if not isinstance(coords, np.ndarray):
        coords = np.asarray(coords)

    self._coords = coords
    x_min, y_min = np.min(self._coords, axis=0)
    x_max, y_max = np.max(self._coords, axis=0)
    bounds = list(((x_min, y_min), (x_max, y_max)) for _ in range(self._nodes))
    super().__init__(dimension=nodes, bounds=bounds, name="TSP", seed=seed)

    self._distances = np.zeros((self._nodes, self._nodes))
    differences = self._coords[:, np.newaxis, :] - self._coords[np.newaxis, :, :]
    self._distances = np.sqrt(np.sum(differences**2, axis=-1))

evaluate(individual)

Evaluates the candidate individual with the information of the Travelling Salesmas Problem.

The fitness of the solution is the fraction of the sum of the distances of the tour Args: individual (Sequence | Solution): Individual to evaluate

Returns:
  • tuple[float]

    Tuple[float]: Fitness

Source code in digneapy/domains/tsp.py
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
    """Evaluates the candidate individual with the information of the Travelling Salesmas Problem.

    The fitness of the solution is the fraction of the sum of the distances of the tour
    Args:
        individual (Sequence | Solution): Individual to evaluate

    Returns:
        Tuple[float]: Fitness
    """
    if len(individual) != self._nodes + 1:
        msg = f"Mismatch between individual variables ({len(individual)}) and instance variables ({self._nodes}) in {self.__class__.__name__}. A solution for the TSP must be a sequence of len {self._nodes + 1}"
        raise ValueError(msg)

    penalty: np.float64 = np.float64(0)

    if self.__evaluate_constraints(individual):
        distance: float = 0.0
        for i in range(len(individual) - 2):
            distance += self._distances[individual[i]][individual[i + 1]]

        fitness = 1.0 / distance
    else:
        fitness = 2.938736e-39  # --> 1.0 / np.float.max
        penalty = np.finfo(np.float64).max

    if isinstance(individual, Solution):
        individual.fitness = fitness
        individual.objectives = (fitness,)
        individual.constraints = (penalty,)

    return (fitness,)

TSPDomain

Bases: Domain

Domain to generate instances for the Symmetric Travelling Salesman Problem.

Source code in digneapy/domains/tsp.py
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
class TSPDomain(Domain):
    """Domain to generate instances for the Symmetric Travelling Salesman Problem."""

    __FEAT_NAMES = "size,std_distances,centroid_x,centroid_y,radius,fraction_distances,area,variance_nnNds,variation_nnNds,cluster_ratio,mean_cluster_radius".split(
        ","
    )

    def __init__(
        self,
        dimension: int = 100,
        x_range: Tuple[int, int] = (0, 1000),
        y_range: Tuple[int, int] = (0, 1000),
        seed: int = 42,
    ):
        """Creates a new TSPDomain to generate instances for the Symmetric Travelling Salesman Problem

        Args:
            dimension (int, optional): Dimension of the instances to generate. Defaults to 100.
            x_range (Tuple[int, int], optional): Ranges for the Xs coordinates of each node/city. Defaults to (0, 1000).
            y_range (Tuple[int, int], optional): Ranges for the ys coordinates of each node/city. Defaults to (0, 1000).

        Raises:
            ValueError: If dimension is < 0
            ValueError: If x_range OR y_range does not have 2 dimensions each
            ValueError: If minimum ranges are greater than maximum ranges
        """
        if dimension < 0:
            raise ValueError(f"Expected dimension > 0 got {dimension}")
        if len(x_range) != 2 or len(y_range) != 2:
            raise ValueError(
                f"Expected x_range and y_range to be a tuple with only to integers. Got: x_range = {x_range} and y_range = {y_range}"
            )
        x_min, x_max = x_range
        y_min, y_max = y_range
        if x_min < 0 or x_max <= x_min:
            raise ValueError(
                f"Expected x_range to be (x_min, x_max) where x_min >= 0 and x_max > x_min. Got: x_range {x_range}"
            )
        if y_min < 0 or y_max <= y_min:
            raise ValueError(
                f"Expected y_range to be (y_min, y_max) where y_min >= 0 and y_max > y_min. Got: y_range {y_range}"
            )

        self._x_range = x_range
        self._y_range = y_range
        __bounds = [
            (x_min, x_max) if i % 2 == 0 else (y_min, y_max)
            for i in range(dimension * 2)
        ]

        super().__init__(dimension=dimension, bounds=__bounds, name="TSP", seed=seed)

    def generate_instances(self, n: int = 1) -> List[Instance]:
        """Generates N instances using numpy. It can return the instances in two formats:
        1. A numpy ndarray with the definition of the instances
        2. A list of Instance objects created from the raw numpy generation

        Args:
            n (int, optional): Number of instances to generate. Defaults to 1.
            cast (bool, optional): Whether to cast the raw data to Instance objects. Defaults to False.

        Returns:
            List[Instance]: Sequence of instances
        """
        instances = np.empty(shape=(n, self.dimension * 2), dtype=np.float32)
        instances[:, 0::2] = self._rng.uniform(
            low=self._x_range[0],
            high=self._x_range[1],
            size=(n, (self.dimension)),
        )
        instances[:, 1::2] = self._rng.uniform(
            low=self._y_range[0],
            high=self._y_range[1],
            size=(n, (self.dimension)),
        )
        return list(Instance(coords) for coords in instances)

    def extract_features(self, instances: Sequence[Instance]) -> np.ndarray:
        """Extract the features of the instance based on the TSP domain.
           For the TSP the features are:
            - Size
            - Standard deviation of the distances
            - Centroid coordinates
            - Radius of the instance
            - Fraction of distinct distances
            - Rectangular area
            - Variance of the normalised nearest neighbours distances
            - Coefficient of variation of the nearest neighbours distances
            - Cluster ratio
            - Mean cluster radius
        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Tuple[float]: Values of each feature
        """
        _instances = np.asarray(instances, copy=True)
        N_INSTANCES = len(_instances)
        N_CITIES = len(_instances[0]) // 2  # self.dimension // 2
        assert _instances is not instances
        coords = np.asarray(_instances, copy=True).reshape((N_INSTANCES, N_CITIES, 2))
        xs = coords[:, :, 0]
        ys = coords[:, :, 1]
        areas = (
            (np.max(xs, axis=1) - np.min(xs, axis=1))
            * (np.max(ys, axis=1) - np.min(ys, axis=1))
        ).astype(np.float64)

        # Compute distances for all instances
        distances = np.zeros((N_INSTANCES, N_CITIES, N_CITIES))
        differences = coords[:, :, np.newaxis, :] - coords[:, np.newaxis, :, :]
        distances = np.sqrt(np.sum(differences**2, axis=-1))
        mask = ~np.eye(N_CITIES, dtype=bool)
        std_distances = np.std(distances[:, mask], axis=1)

        centroids = np.mean(coords, axis=1)
        expanded_centroids = centroids[:, np.newaxis, :]
        centroids_distances = np.linalg.norm(coords - expanded_centroids, axis=-1)
        radius = np.mean(centroids_distances, axis=1)

        fractions = np.array(
            [
                np.unique(d[np.triu_indices_from(d, k=1)]).size
                / (N_CITIES * (N_CITIES - 1) / 2)
                for d in distances
            ]
        )
        # Top five only
        norm_distances = np.sort(distances, axis=2)[:, :, ::-1][:, :, :5] / np.max(
            distances, axis=(1, 2), keepdims=True
        )

        variance_nnds = np.var(norm_distances, axis=(1, 2))
        variation_nnds = variance_nnds / np.mean(norm_distances, axis=(1, 2))

        cluster_ratio = np.empty(shape=N_INSTANCES, dtype=np.float64)
        mean_cluster_radius = np.empty(shape=N_INSTANCES, dtype=np.float64)

        for i in range(N_INSTANCES):
            scale = np.mean(np.std(coords[i], axis=0))
            dbscan = DBSCAN(eps=0.2 * scale, min_samples=1)
            labels = dbscan.fit_predict(coords[i])
            unique_labels = [label for label in set(labels) if label != -1]
            cluster_ratio[i] = len(unique_labels) / N_CITIES
            # Cluster radius
            cluster_radius = np.empty(shape=len(unique_labels), dtype=np.float64)
            for j, label_id in enumerate(unique_labels):
                points_in_cluster = coords[i][labels == label_id]
                cluster_centroid = np.mean(points_in_cluster, axis=0)
                cluster_radius[j] = np.mean(
                    np.linalg.norm(points_in_cluster - cluster_centroid, axis=1)
                )

            mean_cluster_radius[i] = (
                np.mean(cluster_radius) if cluster_radius.size > 0 else 0.0
            )
        return np.column_stack(
            [
                np.full(shape=len(_instances), fill_value=N_CITIES),
                std_distances,
                centroids[:, 0],
                centroids[:, 1],
                radius,
                fractions,
                areas,
                variance_nnds,
                variation_nnds,
                cluster_ratio,
                mean_cluster_radius,
            ]
        ).astype(np.float64)

    def extract_features_as_dict(
        self, instances: Sequence[Instance]
    ) -> List[Dict[str, np.float32]]:
        """Creates a dictionary with the features of the instance.
        The key are the names of each feature and the values are
        the values extracted from instance.

        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Mapping[str, float]: Dictionary with the names/values of each feature
        """
        features = self.extract_features(instances)
        named_features: list[dict[str, np.float32]] = [{}] * len(features)
        for i, feats in enumerate(features):
            named_features[i] = {k: v for k, v in zip(TSPDomain.__FEAT_NAMES, feats)}
        return named_features

    def generate_problem_from_instance(self, instance: Instance) -> TSP:
        n_nodes = len(instance) // 2
        coords = np.array([*zip(instance[::2], instance[1::2])])
        return TSP(nodes=n_nodes, coords=coords)

    def generate_problems_from_instances(
        self, instances: Sequence[Instance]
    ) -> List[Problem]:
        if not isinstance(instances, np.ndarray):
            instances = np.asarray(instances)

        dimension = instances.shape[1] // 2
        return list(
            TSP(
                nodes=dimension, coords=np.array([*zip(instance[0::2], instance[1::2])])
            )
            for instance in instances
        )

__init__(dimension=100, x_range=(0, 1000), y_range=(0, 1000), seed=42)

Creates a new TSPDomain to generate instances for the Symmetric Travelling Salesman Problem

Parameters:
  • dimension (int, default: 100 ) –

    Dimension of the instances to generate. Defaults to 100.

  • x_range (Tuple[int, int], default: (0, 1000) ) –

    Ranges for the Xs coordinates of each node/city. Defaults to (0, 1000).

  • y_range (Tuple[int, int], default: (0, 1000) ) –

    Ranges for the ys coordinates of each node/city. Defaults to (0, 1000).

Raises:
  • ValueError

    If dimension is < 0

  • ValueError

    If x_range OR y_range does not have 2 dimensions each

  • ValueError

    If minimum ranges are greater than maximum ranges

Source code in digneapy/domains/tsp.py
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def __init__(
    self,
    dimension: int = 100,
    x_range: Tuple[int, int] = (0, 1000),
    y_range: Tuple[int, int] = (0, 1000),
    seed: int = 42,
):
    """Creates a new TSPDomain to generate instances for the Symmetric Travelling Salesman Problem

    Args:
        dimension (int, optional): Dimension of the instances to generate. Defaults to 100.
        x_range (Tuple[int, int], optional): Ranges for the Xs coordinates of each node/city. Defaults to (0, 1000).
        y_range (Tuple[int, int], optional): Ranges for the ys coordinates of each node/city. Defaults to (0, 1000).

    Raises:
        ValueError: If dimension is < 0
        ValueError: If x_range OR y_range does not have 2 dimensions each
        ValueError: If minimum ranges are greater than maximum ranges
    """
    if dimension < 0:
        raise ValueError(f"Expected dimension > 0 got {dimension}")
    if len(x_range) != 2 or len(y_range) != 2:
        raise ValueError(
            f"Expected x_range and y_range to be a tuple with only to integers. Got: x_range = {x_range} and y_range = {y_range}"
        )
    x_min, x_max = x_range
    y_min, y_max = y_range
    if x_min < 0 or x_max <= x_min:
        raise ValueError(
            f"Expected x_range to be (x_min, x_max) where x_min >= 0 and x_max > x_min. Got: x_range {x_range}"
        )
    if y_min < 0 or y_max <= y_min:
        raise ValueError(
            f"Expected y_range to be (y_min, y_max) where y_min >= 0 and y_max > y_min. Got: y_range {y_range}"
        )

    self._x_range = x_range
    self._y_range = y_range
    __bounds = [
        (x_min, x_max) if i % 2 == 0 else (y_min, y_max)
        for i in range(dimension * 2)
    ]

    super().__init__(dimension=dimension, bounds=__bounds, name="TSP", seed=seed)

extract_features(instances)

Extract the features of the instance based on the TSP domain. For the TSP the features are: - Size - Standard deviation of the distances - Centroid coordinates - Radius of the instance - Fraction of distinct distances - Rectangular area - Variance of the normalised nearest neighbours distances - Coefficient of variation of the nearest neighbours distances - Cluster ratio - Mean cluster radius Args: instance (Instance): Instance to extract the features from

Returns:
  • ndarray

    Tuple[float]: Values of each feature

Source code in digneapy/domains/tsp.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
def extract_features(self, instances: Sequence[Instance]) -> np.ndarray:
    """Extract the features of the instance based on the TSP domain.
       For the TSP the features are:
        - Size
        - Standard deviation of the distances
        - Centroid coordinates
        - Radius of the instance
        - Fraction of distinct distances
        - Rectangular area
        - Variance of the normalised nearest neighbours distances
        - Coefficient of variation of the nearest neighbours distances
        - Cluster ratio
        - Mean cluster radius
    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Tuple[float]: Values of each feature
    """
    _instances = np.asarray(instances, copy=True)
    N_INSTANCES = len(_instances)
    N_CITIES = len(_instances[0]) // 2  # self.dimension // 2
    assert _instances is not instances
    coords = np.asarray(_instances, copy=True).reshape((N_INSTANCES, N_CITIES, 2))
    xs = coords[:, :, 0]
    ys = coords[:, :, 1]
    areas = (
        (np.max(xs, axis=1) - np.min(xs, axis=1))
        * (np.max(ys, axis=1) - np.min(ys, axis=1))
    ).astype(np.float64)

    # Compute distances for all instances
    distances = np.zeros((N_INSTANCES, N_CITIES, N_CITIES))
    differences = coords[:, :, np.newaxis, :] - coords[:, np.newaxis, :, :]
    distances = np.sqrt(np.sum(differences**2, axis=-1))
    mask = ~np.eye(N_CITIES, dtype=bool)
    std_distances = np.std(distances[:, mask], axis=1)

    centroids = np.mean(coords, axis=1)
    expanded_centroids = centroids[:, np.newaxis, :]
    centroids_distances = np.linalg.norm(coords - expanded_centroids, axis=-1)
    radius = np.mean(centroids_distances, axis=1)

    fractions = np.array(
        [
            np.unique(d[np.triu_indices_from(d, k=1)]).size
            / (N_CITIES * (N_CITIES - 1) / 2)
            for d in distances
        ]
    )
    # Top five only
    norm_distances = np.sort(distances, axis=2)[:, :, ::-1][:, :, :5] / np.max(
        distances, axis=(1, 2), keepdims=True
    )

    variance_nnds = np.var(norm_distances, axis=(1, 2))
    variation_nnds = variance_nnds / np.mean(norm_distances, axis=(1, 2))

    cluster_ratio = np.empty(shape=N_INSTANCES, dtype=np.float64)
    mean_cluster_radius = np.empty(shape=N_INSTANCES, dtype=np.float64)

    for i in range(N_INSTANCES):
        scale = np.mean(np.std(coords[i], axis=0))
        dbscan = DBSCAN(eps=0.2 * scale, min_samples=1)
        labels = dbscan.fit_predict(coords[i])
        unique_labels = [label for label in set(labels) if label != -1]
        cluster_ratio[i] = len(unique_labels) / N_CITIES
        # Cluster radius
        cluster_radius = np.empty(shape=len(unique_labels), dtype=np.float64)
        for j, label_id in enumerate(unique_labels):
            points_in_cluster = coords[i][labels == label_id]
            cluster_centroid = np.mean(points_in_cluster, axis=0)
            cluster_radius[j] = np.mean(
                np.linalg.norm(points_in_cluster - cluster_centroid, axis=1)
            )

        mean_cluster_radius[i] = (
            np.mean(cluster_radius) if cluster_radius.size > 0 else 0.0
        )
    return np.column_stack(
        [
            np.full(shape=len(_instances), fill_value=N_CITIES),
            std_distances,
            centroids[:, 0],
            centroids[:, 1],
            radius,
            fractions,
            areas,
            variance_nnds,
            variation_nnds,
            cluster_ratio,
            mean_cluster_radius,
        ]
    ).astype(np.float64)

extract_features_as_dict(instances)

Creates a dictionary with the features of the instance. The key are the names of each feature and the values are the values extracted from instance.

Parameters:
  • instance (Instance) –

    Instance to extract the features from

Returns:
  • List[Dict[str, float32]]

    Mapping[str, float]: Dictionary with the names/values of each feature

Source code in digneapy/domains/tsp.py
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def extract_features_as_dict(
    self, instances: Sequence[Instance]
) -> List[Dict[str, np.float32]]:
    """Creates a dictionary with the features of the instance.
    The key are the names of each feature and the values are
    the values extracted from instance.

    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Mapping[str, float]: Dictionary with the names/values of each feature
    """
    features = self.extract_features(instances)
    named_features: list[dict[str, np.float32]] = [{}] * len(features)
    for i, feats in enumerate(features):
        named_features[i] = {k: v for k, v in zip(TSPDomain.__FEAT_NAMES, feats)}
    return named_features

generate_instances(n=1)

Generates N instances using numpy. It can return the instances in two formats: 1. A numpy ndarray with the definition of the instances 2. A list of Instance objects created from the raw numpy generation

Parameters:
  • n (int, default: 1 ) –

    Number of instances to generate. Defaults to 1.

  • cast (bool) –

    Whether to cast the raw data to Instance objects. Defaults to False.

Returns:
  • List[Instance]

    List[Instance]: Sequence of instances

Source code in digneapy/domains/tsp.py
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def generate_instances(self, n: int = 1) -> List[Instance]:
    """Generates N instances using numpy. It can return the instances in two formats:
    1. A numpy ndarray with the definition of the instances
    2. A list of Instance objects created from the raw numpy generation

    Args:
        n (int, optional): Number of instances to generate. Defaults to 1.
        cast (bool, optional): Whether to cast the raw data to Instance objects. Defaults to False.

    Returns:
        List[Instance]: Sequence of instances
    """
    instances = np.empty(shape=(n, self.dimension * 2), dtype=np.float32)
    instances[:, 0::2] = self._rng.uniform(
        low=self._x_range[0],
        high=self._x_range[1],
        size=(n, (self.dimension)),
    )
    instances[:, 1::2] = self._rng.uniform(
        low=self._y_range[0],
        high=self._y_range[1],
        size=(n, (self.dimension)),
    )
    return list(Instance(coords) for coords in instances)