@File : knapsack.py @Time : 2023/10/30 12:18:44 @Author : Alejandro Marrero @Version : 1.0 @Contact : amarrerd@ull.edu.es @License : (C)Copyright 2023, Alejandro Marrero @Desc : None

Knapsack

Bases: Problem

Source code in digneapy/domains/kp.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
class Knapsack(Problem):
    def __init__(
        self,
        profits: Sequence[int],
        weights: Sequence[int],
        capacity: int = 0,
        seed: int = 42,
        *args,
        **kwargs,
    ):
        if len(profits) != len(weights):
            raise ValueError(
                f"The number of weights and profits is different in Knapsack. Got {len(weights)} weights and {len(profits)} profits"
            )
        if capacity <= 0:
            raise ValueError(f"Capacity must be a positive integer. Got {capacity}")

        super().__init__(dimension=len(profits), bounds=[], name="KP", seed=seed)

        self.weights = weights
        self.profits = profits
        self.capacity = capacity
        self.penalty_factor = 100.0

    def get_bounds_at(self, i: int) -> tuple:
        if i < 0 or i > self._dimension:
            raise ValueError(
                f"Index {i} out-of-range. The bounds are 0-{self._dimension} "
            )
        return (0, 1)

    @property
    def bounds(self):
        return list((0, 1) for _ in range(self._dimension))

    def evaluate(self, individual: Sequence | Solution | np.ndarray) -> Tuple[float]:
        """Evaluates the candidate individual with the information of the Knapsack

        Args:
            individual (Sequence | Solution): Individual to evaluate

        Raises:
            ValueError: Raises an error if the len(individual) != len(profits or weights)

        Returns:
            Tuple[float]: Profit
        """

        if len(individual) != self._dimension:
            msg = f"Mismatch between individual variables and instance variables in {self.__class__.__name__}"
            raise ValueError(msg)

        profit = np.dot(individual, self.profits)
        packed = np.dot(individual, self.weights)
        difference = max(0, packed - self.capacity)
        penalty = self.penalty_factor * difference
        profit -= penalty

        return (profit,)

    def __call__(self, individual: Sequence | Solution | np.ndarray) -> Tuple[float]:
        return self.evaluate(individual)

    def __array__(self, dtype=np.int32, copy: Optional[bool] = None) -> npt.ArrayLike:
        """Creates a numpy array from the Knapsack instance description.

        Returns:
            npt.ArrayLike: 1d numpy array of size 1 + (2 * dimension)
        """
        return np.asarray(
            [
                self.capacity,
                *list(
                    itertools.chain.from_iterable([*zip(self.weights, self.profits)])
                ),
            ],
            dtype=dtype,
            copy=copy,
        )

    def __repr__(self):
        return f"KP<n={len(self.profits)},C={self.capacity}>"

    def __len__(self):
        return len(self.weights)

    def create_solution(self) -> Solution:
        chromosome = self._rng.integers(low=0, high=1, size=self._dimension)
        return Solution(variables=chromosome)

    def to_file(self, filename: str = "instance.kp"):
        with open(filename, "w") as file:
            file.write(f"{len(self)}\t{self.capacity}\n\n")
            content = "\n".join(
                f"{w_i}\t{p_i}" for w_i, p_i in zip(self.weights, self.profits)
            )
            file.write(content)

    @classmethod
    def from_file(cls, filename: str):
        content = np.loadtxt(filename, dtype=int)
        capacity = content[0][1]
        weights, profits = content[1:, 0], content[1:, 1]
        return cls(profits=profits, weights=weights, capacity=capacity)

    def to_instance(self) -> Instance:
        _vars = [self.capacity] + list(
            itertools.chain.from_iterable([*zip(self.weights, self.profits)])
        )
        return Instance(variables=_vars)

__array__(dtype=np.int32, copy=None)

Creates a numpy array from the Knapsack instance description.

Returns:
  • ArrayLike

    npt.ArrayLike: 1d numpy array of size 1 + (2 * dimension)

Source code in digneapy/domains/kp.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def __array__(self, dtype=np.int32, copy: Optional[bool] = None) -> npt.ArrayLike:
    """Creates a numpy array from the Knapsack instance description.

    Returns:
        npt.ArrayLike: 1d numpy array of size 1 + (2 * dimension)
    """
    return np.asarray(
        [
            self.capacity,
            *list(
                itertools.chain.from_iterable([*zip(self.weights, self.profits)])
            ),
        ],
        dtype=dtype,
        copy=copy,
    )

evaluate(individual)

Evaluates the candidate individual with the information of the Knapsack

Parameters:
  • individual (Sequence | Solution) –

    Individual to evaluate

Raises:
  • ValueError

    Raises an error if the len(individual) != len(profits or weights)

Returns:
  • Tuple[float]

    Tuple[float]: Profit

Source code in digneapy/domains/kp.py
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def evaluate(self, individual: Sequence | Solution | np.ndarray) -> Tuple[float]:
    """Evaluates the candidate individual with the information of the Knapsack

    Args:
        individual (Sequence | Solution): Individual to evaluate

    Raises:
        ValueError: Raises an error if the len(individual) != len(profits or weights)

    Returns:
        Tuple[float]: Profit
    """

    if len(individual) != self._dimension:
        msg = f"Mismatch between individual variables and instance variables in {self.__class__.__name__}"
        raise ValueError(msg)

    profit = np.dot(individual, self.profits)
    packed = np.dot(individual, self.weights)
    difference = max(0, packed - self.capacity)
    penalty = self.penalty_factor * difference
    profit -= penalty

    return (profit,)

KnapsackDomain

Bases: Domain

Source code in digneapy/domains/kp.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
class KnapsackDomain(Domain):
    __capacity_approaches = ("evolved", "percentage", "fixed")

    def __init__(
        self,
        dimension: int = 50,
        min_p: int = 1,
        min_w: int = 1,
        max_p: int = 1_000,
        max_w: int = 1_000,
        capacity_approach: str = "evolved",
        max_capacity: int = int(1e5),
        capacity_ratio: float = 0.8,
        seed: Optional[int] = None,
    ):
        self.min_p = min_p
        self.min_w = min_w
        self.max_p = max_p
        self.max_w = max_w
        self.max_capacity = max_capacity

        if capacity_ratio < 0.0 or capacity_ratio > 1.0 or not float(capacity_ratio):
            self.capacity_ratio = 0.8  # Default
            msg = "The capacity ratio must be a float number in the range [0.0-1.0]. Set as 0.8 as default."
            print(msg)
        else:
            self.capacity_ratio = capacity_ratio

        if capacity_approach not in self.__capacity_approaches:
            msg = f"The capacity approach {capacity_approach} is not available. Please choose between {self.__capacity_approaches}. Evolved approach set as default."
            print(msg)
            self._capacity_approach = "evolved"
        else:
            self._capacity_approach = capacity_approach

        bounds = [(1.0, self.max_capacity)] + [
            (min_w, max_w) if i % 2 == 0 else (min_p, max_p)
            for i in range(2 * dimension)
        ]
        super().__init__(
            dimension=dimension,
            bounds=bounds,
            name="KP",
            feat_names="capacity,max_p,max_w,min_p,min_w,avg_eff,mean,std".split(","),
            seed=seed,
        )

    @property
    def capacity_approach(self):
        return self._capacity_approach

    @capacity_approach.setter
    def capacity_approach(self, app):
        """Setter for the Maximum capacity generator approach.
        It forces to update the variable to one of the specify values

        Args:
            app (str): Approach for setting the capacity. It should be fixed, evolved or percentage.
        """
        if app not in self.__capacity_approaches:
            msg = f"The capacity approach {app} is not available. Please choose between {self.__capacity_approaches}. Evolved approach set as default."
            print(msg)
            self._capacity_approach = "evolved"
        else:
            self._capacity_approach = app

    def generate_instances(self, n: int = 1) -> List[Instance]:
        """Generates N instances for the domain.

        Args:
            n (int, optional): Number of instances to generate. Defaults to 1.

        Returns:
            List[Instance]: A list of Instance objects created from the raw numpy generation
        """
        weights_and_profits = np.empty(shape=(n, self.dimension * 2), dtype=np.int32)
        weights_and_profits[:, 0::2] = self._rng.integers(
            low=self.min_w, high=self.max_w, size=(n, self.dimension)
        )
        weights_and_profits[:, 1::2] = self._rng.integers(
            low=self.min_p, high=self.max_p, size=(n, self.dimension)
        )
        # Assume fixed
        capacities = np.full(n, fill_value=self.max_capacity, dtype=np.int32)
        match self.capacity_approach:
            case "evolved":
                capacities[:] = self._rng.integers(1, self.max_capacity, size=n)
            case "percentage":
                capacities[:] = (
                    np.sum(weights_and_profits[:, 1::2], axis=1) * self.capacity_ratio
                ).astype(np.int32)
        return list(
            Instance(i) for i in np.column_stack((capacities, weights_and_profits))
        )

    def extract_features(
        self, instances: Sequence[Instance] | np.ndarray
    ) -> np.ndarray:
        """Extract the features of the instance based on the domain

        Args:
            instances (Sequence[Instance]): Instances to extract the features from.

        Returns:
            ArrayLike: 2d array with the features of each instance
        """

        if not isinstance(instances, np.ndarray):
            instances = np.asarray(instances, copy=True)

        features = np.empty(shape=(len(instances), 8), dtype=np.float32)
        weights = instances[:, 1::2]
        profits = instances[:, 2::2]
        features[:, 0] = instances[:, 0]  # Qs
        features[:, 1] = np.max(profits, axis=1)
        features[:, 2] = np.max(weights, axis=1)
        features[:, 3] = np.min(profits, axis=1)
        features[:, 4] = np.min(weights, axis=1)
        features[:, 5] = np.mean(profits / weights)
        features[:, 6] = np.mean(instances[:, 1:], axis=1)
        features[:, 7] = np.std(instances[:, 1:], axis=1)

        return features

    def extract_features_as_dict(
        self, instances: Sequence[Instance] | np.ndarray
    ) -> List[Dict[str, np.float32]]:
        """Creates a dictionary with the features of the instance.
        The key are the names of each feature and the values are
        the values extracted from instance.

        Args:
            instances (Sequence[Instance]): Instances to extract the features from. They should in the an array form.

        Returns:
            Dict[str, float]: Dictionary with the names/values of each feature
        """
        features = self.extract_features(instances)
        named_features: list[dict[str, np.float32]] = [{}] * len(features)
        for i, feats in enumerate(features):
            named_features[i] = {k: v for k, v in zip(self.feat_names, feats)}

        return named_features

    def generate_problems_from_instances(
        self, instances: Sequence[Instance] | np.ndarray
    ) -> List:
        """Generates a List of Knapsack objects from the instances

        Args:
            instances (Sequence[Instance]): Instances to create the problems from

        Returns:
            List: List containing len(instances) objects of type Knapsack
        """
        if not isinstance(instances, np.ndarray):
            instances = np.asarray(instances)

        capacities = instances[:, 0].astype(int)
        weights = instances[:, 1::2].astype(int)
        profits = instances[:, 2::2].astype(int)
        # Sets the capacity according to the method
        if self.capacity_approach == "percentage":
            capacities[:] = (np.sum(weights, axis=1) * self.capacity_ratio).astype(
                np.int32
            )
        elif self.capacity_approach == "fixed":
            capacities[:] = self.max_capacity
        return list(
            Knapsack(profits=profits[i], weights=weights[i], capacity=capacities[i])
            for i in range(len(instances))
        )

extract_features(instances)

Extract the features of the instance based on the domain

Parameters:
  • instances (Sequence[Instance]) –

    Instances to extract the features from.

Returns:
  • ArrayLike( ndarray ) –

    2d array with the features of each instance

Source code in digneapy/domains/kp.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def extract_features(
    self, instances: Sequence[Instance] | np.ndarray
) -> np.ndarray:
    """Extract the features of the instance based on the domain

    Args:
        instances (Sequence[Instance]): Instances to extract the features from.

    Returns:
        ArrayLike: 2d array with the features of each instance
    """

    if not isinstance(instances, np.ndarray):
        instances = np.asarray(instances, copy=True)

    features = np.empty(shape=(len(instances), 8), dtype=np.float32)
    weights = instances[:, 1::2]
    profits = instances[:, 2::2]
    features[:, 0] = instances[:, 0]  # Qs
    features[:, 1] = np.max(profits, axis=1)
    features[:, 2] = np.max(weights, axis=1)
    features[:, 3] = np.min(profits, axis=1)
    features[:, 4] = np.min(weights, axis=1)
    features[:, 5] = np.mean(profits / weights)
    features[:, 6] = np.mean(instances[:, 1:], axis=1)
    features[:, 7] = np.std(instances[:, 1:], axis=1)

    return features

extract_features_as_dict(instances)

Creates a dictionary with the features of the instance. The key are the names of each feature and the values are the values extracted from instance.

Parameters:
  • instances (Sequence[Instance]) –

    Instances to extract the features from. They should in the an array form.

Returns:
  • List[Dict[str, float32]]

    Dict[str, float]: Dictionary with the names/values of each feature

Source code in digneapy/domains/kp.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
def extract_features_as_dict(
    self, instances: Sequence[Instance] | np.ndarray
) -> List[Dict[str, np.float32]]:
    """Creates a dictionary with the features of the instance.
    The key are the names of each feature and the values are
    the values extracted from instance.

    Args:
        instances (Sequence[Instance]): Instances to extract the features from. They should in the an array form.

    Returns:
        Dict[str, float]: Dictionary with the names/values of each feature
    """
    features = self.extract_features(instances)
    named_features: list[dict[str, np.float32]] = [{}] * len(features)
    for i, feats in enumerate(features):
        named_features[i] = {k: v for k, v in zip(self.feat_names, feats)}

    return named_features

generate_instances(n=1)

Generates N instances for the domain.

Parameters:
  • n (int, default: 1 ) –

    Number of instances to generate. Defaults to 1.

Returns:
  • List[Instance]

    List[Instance]: A list of Instance objects created from the raw numpy generation

Source code in digneapy/domains/kp.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def generate_instances(self, n: int = 1) -> List[Instance]:
    """Generates N instances for the domain.

    Args:
        n (int, optional): Number of instances to generate. Defaults to 1.

    Returns:
        List[Instance]: A list of Instance objects created from the raw numpy generation
    """
    weights_and_profits = np.empty(shape=(n, self.dimension * 2), dtype=np.int32)
    weights_and_profits[:, 0::2] = self._rng.integers(
        low=self.min_w, high=self.max_w, size=(n, self.dimension)
    )
    weights_and_profits[:, 1::2] = self._rng.integers(
        low=self.min_p, high=self.max_p, size=(n, self.dimension)
    )
    # Assume fixed
    capacities = np.full(n, fill_value=self.max_capacity, dtype=np.int32)
    match self.capacity_approach:
        case "evolved":
            capacities[:] = self._rng.integers(1, self.max_capacity, size=n)
        case "percentage":
            capacities[:] = (
                np.sum(weights_and_profits[:, 1::2], axis=1) * self.capacity_ratio
            ).astype(np.int32)
    return list(
        Instance(i) for i in np.column_stack((capacities, weights_and_profits))
    )

generate_problems_from_instances(instances)

Generates a List of Knapsack objects from the instances

Parameters:
  • instances (Sequence[Instance]) –

    Instances to create the problems from

Returns:
  • List( List ) –

    List containing len(instances) objects of type Knapsack

Source code in digneapy/domains/kp.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
def generate_problems_from_instances(
    self, instances: Sequence[Instance] | np.ndarray
) -> List:
    """Generates a List of Knapsack objects from the instances

    Args:
        instances (Sequence[Instance]): Instances to create the problems from

    Returns:
        List: List containing len(instances) objects of type Knapsack
    """
    if not isinstance(instances, np.ndarray):
        instances = np.asarray(instances)

    capacities = instances[:, 0].astype(int)
    weights = instances[:, 1::2].astype(int)
    profits = instances[:, 2::2].astype(int)
    # Sets the capacity according to the method
    if self.capacity_approach == "percentage":
        capacities[:] = (np.sum(weights, axis=1) * self.capacity_ratio).astype(
            np.int32
        )
    elif self.capacity_approach == "fixed":
        capacities[:] = self.max_capacity
    return list(
        Knapsack(profits=profits[i], weights=weights[i], capacity=capacities[i])
        for i in range(len(instances))
    )