@File : bin_packing.py @Time : 2024/06/18 09:15:05 @Author : Alejandro Marrero @Version : 1.0 @Contact : amarrerd@ull.edu.es @License : (C)Copyright 2024, Alejandro Marrero @Desc : None

BPP

Bases: Problem

Source code in digneapy/domains/bpp.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
class BPP(Problem):
    def __init__(
        self,
        items: Iterable[int],
        capacity: int,
        seed: int = 42,
        *args,
        **kwargs,
    ):
        self._items = tuple(items)
        self._capacity = capacity
        dim = len(self._items)
        assert len(self._items) > 0
        assert self._capacity > 0

        bounds = list((0, dim - 1) for _ in range(dim))
        super().__init__(dimension=dim, bounds=bounds, name="BPP", seed=seed)

    def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
        """Evaluates the candidate individual with the information of the Bin Packing.
        The fitness of the solution is the amount of unused space, as well as the
        number of bins for a specific solution. Falkenauer (1998) performance metric
        defined as:
            (x) = \\frac{\\sum_{k=1}^{N} \\left(\\frac{fill_k}{C}\\right)^2}{N}

        Args:
            individual (Sequence | Solution): Individual to evaluate

        Returns:
            Tuple[float]: Falkenauer Fitness
        """
        if len(individual) != self._dimension:
            msg = f"Mismatch between individual variables ({len(individual)}) and instance variables ({self._dimension}) in {self.__class__.__name__}"
            raise ValueError(msg)

        used_bins = np.max(individual).astype(int) + 1
        fill_i = np.zeros(used_bins)

        for item_idx, bin in enumerate(individual):
            fill_i[bin] += self._items[item_idx]

        fitness = (
            sum(((f_i / self._capacity) * (f_i / self._capacity)) for f_i in fill_i)
            / used_bins
        )
        if isinstance(individual, Solution):
            individual.fitness = fitness
            individual.objectives = (fitness,)

        return (fitness,)

    def __call__(self, individual: Sequence | Solution) -> tuple[float]:
        return self.evaluate(individual)

    def __repr__(self):
        return f"BPP<n={self._dimension},C={self._capacity},I={self._items}>"

    def __len__(self):
        return self._dimension

    def create_solution(self) -> Solution:
        items = list(range(self._dimension))
        return Solution(chromosome=items)

    def to_file(self, filename: str = "instance.bpp"):
        with open(filename, "w") as file:
            file.write(f"{len(self)}\t{self._capacity}\n\n")
            content = "\n".join(str(i) for i in self._items)
            file.write(content)

    @classmethod
    def from_file(cls, filename: str):
        with open(filename) as f:
            lines = f.readlines()
            lines = [line.rstrip() for line in lines]

        (_, capacity) = lines[0].split()
        items = list(int(i) for i in lines[2:])

        return cls(items=items, capacity=int(capacity))

    def to_instance(self) -> Instance:
        _vars = [self._capacity, *self._items]
        return Instance(variables=_vars)

evaluate(individual)

Evaluates the candidate individual with the information of the Bin Packing. The fitness of the solution is the amount of unused space, as well as the number of bins for a specific solution. Falkenauer (1998) performance metric defined as: (x) = \frac{\sum_{k=1}^{N} \left(\frac{fill_k}{C}\right)^2}{N}

Parameters:
  • individual (Sequence | Solution) –

    Individual to evaluate

Returns:
  • tuple[float]

    Tuple[float]: Falkenauer Fitness

Source code in digneapy/domains/bpp.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
    """Evaluates the candidate individual with the information of the Bin Packing.
    The fitness of the solution is the amount of unused space, as well as the
    number of bins for a specific solution. Falkenauer (1998) performance metric
    defined as:
        (x) = \\frac{\\sum_{k=1}^{N} \\left(\\frac{fill_k}{C}\\right)^2}{N}

    Args:
        individual (Sequence | Solution): Individual to evaluate

    Returns:
        Tuple[float]: Falkenauer Fitness
    """
    if len(individual) != self._dimension:
        msg = f"Mismatch between individual variables ({len(individual)}) and instance variables ({self._dimension}) in {self.__class__.__name__}"
        raise ValueError(msg)

    used_bins = np.max(individual).astype(int) + 1
    fill_i = np.zeros(used_bins)

    for item_idx, bin in enumerate(individual):
        fill_i[bin] += self._items[item_idx]

    fitness = (
        sum(((f_i / self._capacity) * (f_i / self._capacity)) for f_i in fill_i)
        / used_bins
    )
    if isinstance(individual, Solution):
        individual.fitness = fitness
        individual.objectives = (fitness,)

    return (fitness,)

BPPDomain

Bases: Domain

Source code in digneapy/domains/bpp.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
class BPPDomain(Domain):
    __capacity_approaches = ("evolved", "percentage", "fixed")

    def __init__(
        self,
        dimension: int = 50,
        min_i: int = 1,
        max_i: int = 1000,
        capacity_approach: str = "fixed",
        max_capacity: int = 100,
        capacity_ratio: float = 0.8,
        seed: int = 42,
    ):
        if dimension < 0:
            raise ValueError(f"Expected dimension > 0 got {dimension}")
        if min_i < 0:
            raise ValueError(f"Expected min_i > 0 got {min_i}")
        if max_i < 0:
            raise ValueError(f"Expected max_i > 0 got {max_i}")
        if min_i > max_i:
            raise ValueError(
                f"Expected min_i to be less than max_i got ({min_i}, {max_i})"
            )

        self._dimension = dimension
        self._min_i = min_i
        self._max_i = max_i
        self._max_capacity = max_capacity

        if capacity_ratio < 0.0 or capacity_ratio > 1.0 or not float(capacity_ratio):
            self.capacity_ratio = 0.8  # Default
            msg = "The capacity ratio must be a float number in the range [0.0-1.0]. Set as 0.8 as default."
            print(msg)
        else:
            self.capacity_ratio = capacity_ratio

        if capacity_approach not in self.__capacity_approaches:
            msg = f"The capacity approach {capacity_approach} is not available. Please choose between {self.__capacity_approaches}. Evolved approach set as default."
            print(msg)
            self._capacity_approach = "fixed"
        else:
            self._capacity_approach = capacity_approach

        bounds = [(1.0, self._max_capacity)] + [
            (self._min_i, self._max_i) for _ in range(self._dimension)
        ]
        super().__init__(dimension=dimension, bounds=bounds, name="BPP", seed=seed)

    @property
    def capacity_approach(self):
        return self._capacity_approach

    @capacity_approach.setter
    def capacity_approach(self, app):
        """Setter for the Maximum capacity generator approach.
        It forces to update the variable to one of the specify values

        Args:
            app (str): Approach for setting the capacity. It should be fixed, evolved or percentage.
        """
        if app not in self.__capacity_approaches:
            msg = f"The capacity approach {app} is not available. Please choose between {self.__capacity_approaches}. Evolved approach set as default."
            print(msg)
            self._capacity_approach = "fixed"
        else:
            self._capacity_approach = app

    def generate_instance(self) -> Instance:
        """Generates a new instances for the BPP domain

        Returns:
            Instance: New randomly generated instance
        """
        items = self._rng.integers(
            low=self._min_i, high=self._max_i, size=self._dimension, dtype=int
        )
        self._rng.shuffle(items)

        capacity = 0
        # Sets the capacity according to the method
        match self.capacity_approach:
            case "evolved":
                capacity = self._rng.integers(1, self._max_capacity)
            case "percentage":
                capacity = np.sum(items, dtype=int) * self.capacity_ratio
            case "fixed":
                capacity = self._max_capacity

        variables = [capacity, *items]
        return Instance(variables)

    def extract_features(self, instance: Instance) -> tuple:
        """Extract the features of the instance based on the BPP domain.
           For the BPP the features are:
           N, Capacity, MeanWeights, MedianWeights, VarianceWeights, MaxWeight,
           MinWeight, Huge, Large, Medium, Small, Tiny

        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Tuple[float]: Values of each feature
        """
        capacity = instance.variables[0]
        _vars = np.asarray(instance.variables[1:])
        vars_norm = _vars / capacity
        huge = sum(k > 0.5 for k in vars_norm) / self._dimension
        large = sum(0.5 >= k > 1 / 3 for k in vars_norm) / self._dimension
        medium = sum(1 / 3 >= k > 0.25 for k in vars_norm) / self._dimension
        small = sum(0.25 >= k for k in vars_norm) / self._dimension
        tiny = sum(0.1 >= k for k in vars_norm) / self._dimension
        return (
            np.mean(vars_norm),
            np.std(vars_norm),
            np.median(vars_norm),
            np.max(vars_norm),
            np.min(vars_norm),
            tiny,
            small,
            medium,
            large,
            huge,
        )

    def extract_features_as_dict(self, instance: Instance) -> Mapping[str, float]:
        """Creates a dictionary with the features of the instance.
        The key are the names of each feature and the values are
        the values extracted from instance.

        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Mapping[str, float]: Dictionary with the names/values of each feature
        """
        names = "mean,std,median,max,min,tiny,small,medium,large,huge"
        features = self.extract_features(instance)
        return {k: v for k, v in zip(names.split(","), features)}

    def from_instance(self, instance: Instance) -> BPP:
        items = instance.variables[1:]
        capacity = int(instance.variables[0])
        # Sets the capacity according to the method
        match self.capacity_approach:
            case "percentage":
                capacity = np.sum(items) * self.capacity_ratio
            case "fixed":
                capacity = self._max_capacity

        # The BPP capacity must be updated JIC
        instance.variables[0] = capacity
        return BPP(items=items, capacity=int(capacity))

extract_features(instance)

Extract the features of the instance based on the BPP domain. For the BPP the features are: N, Capacity, MeanWeights, MedianWeights, VarianceWeights, MaxWeight, MinWeight, Huge, Large, Medium, Small, Tiny

Parameters:
  • instance (Instance) –

    Instance to extract the features from

Returns:
  • tuple

    Tuple[float]: Values of each feature

Source code in digneapy/domains/bpp.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def extract_features(self, instance: Instance) -> tuple:
    """Extract the features of the instance based on the BPP domain.
       For the BPP the features are:
       N, Capacity, MeanWeights, MedianWeights, VarianceWeights, MaxWeight,
       MinWeight, Huge, Large, Medium, Small, Tiny

    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Tuple[float]: Values of each feature
    """
    capacity = instance.variables[0]
    _vars = np.asarray(instance.variables[1:])
    vars_norm = _vars / capacity
    huge = sum(k > 0.5 for k in vars_norm) / self._dimension
    large = sum(0.5 >= k > 1 / 3 for k in vars_norm) / self._dimension
    medium = sum(1 / 3 >= k > 0.25 for k in vars_norm) / self._dimension
    small = sum(0.25 >= k for k in vars_norm) / self._dimension
    tiny = sum(0.1 >= k for k in vars_norm) / self._dimension
    return (
        np.mean(vars_norm),
        np.std(vars_norm),
        np.median(vars_norm),
        np.max(vars_norm),
        np.min(vars_norm),
        tiny,
        small,
        medium,
        large,
        huge,
    )

extract_features_as_dict(instance)

Creates a dictionary with the features of the instance. The key are the names of each feature and the values are the values extracted from instance.

Parameters:
  • instance (Instance) –

    Instance to extract the features from

Returns:
  • Mapping[str, float]

    Mapping[str, float]: Dictionary with the names/values of each feature

Source code in digneapy/domains/bpp.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def extract_features_as_dict(self, instance: Instance) -> Mapping[str, float]:
    """Creates a dictionary with the features of the instance.
    The key are the names of each feature and the values are
    the values extracted from instance.

    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Mapping[str, float]: Dictionary with the names/values of each feature
    """
    names = "mean,std,median,max,min,tiny,small,medium,large,huge"
    features = self.extract_features(instance)
    return {k: v for k, v in zip(names.split(","), features)}

generate_instance()

Generates a new instances for the BPP domain

Returns:
  • Instance( Instance ) –

    New randomly generated instance

Source code in digneapy/domains/bpp.py
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def generate_instance(self) -> Instance:
    """Generates a new instances for the BPP domain

    Returns:
        Instance: New randomly generated instance
    """
    items = self._rng.integers(
        low=self._min_i, high=self._max_i, size=self._dimension, dtype=int
    )
    self._rng.shuffle(items)

    capacity = 0
    # Sets the capacity according to the method
    match self.capacity_approach:
        case "evolved":
            capacity = self._rng.integers(1, self._max_capacity)
        case "percentage":
            capacity = np.sum(items, dtype=int) * self.capacity_ratio
        case "fixed":
            capacity = self._max_capacity

    variables = [capacity, *items]
    return Instance(variables)