@File : init.py @Time : 2023/10/30 12:35:54 @Author : Alejandro Marrero @Version : 1.0 @Contact : amarrerd@ull.edu.es @License : (C)Copyright 2023, Alejandro Marrero @Desc : None

BPP

Bases: Problem

Source code in digneapy/domains/bpp.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
class BPP(Problem):
    def __init__(
        self,
        items: Iterable[int],
        capacity: int,
        seed: int = 42,
        *args,
        **kwargs,
    ):
        self._items = tuple(items)
        self._capacity = capacity
        dim = len(self._items)
        assert len(self._items) > 0
        assert self._capacity > 0

        bounds = list((0, dim - 1) for _ in range(dim))
        super().__init__(dimension=dim, bounds=bounds, name="BPP", seed=seed)

    def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
        """Evaluates the candidate individual with the information of the Bin Packing.
        The fitness of the solution is the amount of unused space, as well as the
        number of bins for a specific solution. Falkenauer (1998) performance metric
        defined as:
            (x) = \\frac{\\sum_{k=1}^{N} \\left(\\frac{fill_k}{C}\\right)^2}{N}

        Args:
            individual (Sequence | Solution): Individual to evaluate

        Returns:
            Tuple[float]: Falkenauer Fitness
        """
        if len(individual) != self._dimension:
            msg = f"Mismatch between individual variables ({len(individual)}) and instance variables ({self._dimension}) in {self.__class__.__name__}"
            raise ValueError(msg)

        used_bins = np.max(individual).astype(int) + 1
        fill_i = np.zeros(used_bins)

        for item_idx, bin in enumerate(individual):
            fill_i[bin] += self._items[item_idx]

        fitness = (
            sum(((f_i / self._capacity) * (f_i / self._capacity)) for f_i in fill_i)
            / used_bins
        )
        if isinstance(individual, Solution):
            individual.fitness = fitness
            individual.objectives = (fitness,)

        return (fitness,)

    def __call__(self, individual: Sequence | Solution) -> tuple[float]:
        return self.evaluate(individual)

    def __repr__(self):
        return f"BPP<n={self._dimension},C={self._capacity},I={self._items}>"

    def __len__(self):
        return self._dimension

    def create_solution(self) -> Solution:
        items = list(range(self._dimension))
        return Solution(chromosome=items)

    def to_file(self, filename: str = "instance.bpp"):
        with open(filename, "w") as file:
            file.write(f"{len(self)}\t{self._capacity}\n\n")
            content = "\n".join(str(i) for i in self._items)
            file.write(content)

    @classmethod
    def from_file(cls, filename: str):
        with open(filename) as f:
            lines = f.readlines()
            lines = [line.rstrip() for line in lines]

        (_, capacity) = lines[0].split()
        items = list(int(i) for i in lines[2:])

        return cls(items=items, capacity=int(capacity))

    def to_instance(self) -> Instance:
        _vars = [self._capacity, *self._items]
        return Instance(variables=_vars)

evaluate(individual)

Evaluates the candidate individual with the information of the Bin Packing. The fitness of the solution is the amount of unused space, as well as the number of bins for a specific solution. Falkenauer (1998) performance metric defined as: (x) = \frac{\sum_{k=1}^{N} \left(\frac{fill_k}{C}\right)^2}{N}

Parameters:
  • individual (Sequence | Solution) –

    Individual to evaluate

Returns:
  • tuple[float]

    Tuple[float]: Falkenauer Fitness

Source code in digneapy/domains/bpp.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
    """Evaluates the candidate individual with the information of the Bin Packing.
    The fitness of the solution is the amount of unused space, as well as the
    number of bins for a specific solution. Falkenauer (1998) performance metric
    defined as:
        (x) = \\frac{\\sum_{k=1}^{N} \\left(\\frac{fill_k}{C}\\right)^2}{N}

    Args:
        individual (Sequence | Solution): Individual to evaluate

    Returns:
        Tuple[float]: Falkenauer Fitness
    """
    if len(individual) != self._dimension:
        msg = f"Mismatch between individual variables ({len(individual)}) and instance variables ({self._dimension}) in {self.__class__.__name__}"
        raise ValueError(msg)

    used_bins = np.max(individual).astype(int) + 1
    fill_i = np.zeros(used_bins)

    for item_idx, bin in enumerate(individual):
        fill_i[bin] += self._items[item_idx]

    fitness = (
        sum(((f_i / self._capacity) * (f_i / self._capacity)) for f_i in fill_i)
        / used_bins
    )
    if isinstance(individual, Solution):
        individual.fitness = fitness
        individual.objectives = (fitness,)

    return (fitness,)

BPPDomain

Bases: Domain

Source code in digneapy/domains/bpp.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
class BPPDomain(Domain):
    __capacity_approaches = ("evolved", "percentage", "fixed")

    def __init__(
        self,
        dimension: int = 50,
        min_i: int = 1,
        max_i: int = 1000,
        capacity_approach: str = "fixed",
        max_capacity: int = 100,
        capacity_ratio: float = 0.8,
        seed: int = 42,
    ):
        if dimension < 0:
            raise ValueError(f"Expected dimension > 0 got {dimension}")
        if min_i < 0:
            raise ValueError(f"Expected min_i > 0 got {min_i}")
        if max_i < 0:
            raise ValueError(f"Expected max_i > 0 got {max_i}")
        if min_i > max_i:
            raise ValueError(
                f"Expected min_i to be less than max_i got ({min_i}, {max_i})"
            )

        self._dimension = dimension
        self._min_i = min_i
        self._max_i = max_i
        self._max_capacity = max_capacity

        if capacity_ratio < 0.0 or capacity_ratio > 1.0 or not float(capacity_ratio):
            self.capacity_ratio = 0.8  # Default
            msg = "The capacity ratio must be a float number in the range [0.0-1.0]. Set as 0.8 as default."
            print(msg)
        else:
            self.capacity_ratio = capacity_ratio

        if capacity_approach not in self.__capacity_approaches:
            msg = f"The capacity approach {capacity_approach} is not available. Please choose between {self.__capacity_approaches}. Evolved approach set as default."
            print(msg)
            self._capacity_approach = "fixed"
        else:
            self._capacity_approach = capacity_approach

        bounds = [(1.0, self._max_capacity)] + [
            (self._min_i, self._max_i) for _ in range(self._dimension)
        ]
        super().__init__(dimension=dimension, bounds=bounds, name="BPP", seed=seed)

    @property
    def capacity_approach(self):
        return self._capacity_approach

    @capacity_approach.setter
    def capacity_approach(self, app):
        """Setter for the Maximum capacity generator approach.
        It forces to update the variable to one of the specify values

        Args:
            app (str): Approach for setting the capacity. It should be fixed, evolved or percentage.
        """
        if app not in self.__capacity_approaches:
            msg = f"The capacity approach {app} is not available. Please choose between {self.__capacity_approaches}. Evolved approach set as default."
            print(msg)
            self._capacity_approach = "fixed"
        else:
            self._capacity_approach = app

    def generate_instance(self) -> Instance:
        """Generates a new instances for the BPP domain

        Returns:
            Instance: New randomly generated instance
        """
        items = self._rng.integers(
            low=self._min_i, high=self._max_i, size=self._dimension, dtype=int
        )
        self._rng.shuffle(items)

        capacity = 0
        # Sets the capacity according to the method
        match self.capacity_approach:
            case "evolved":
                capacity = self._rng.integers(1, self._max_capacity)
            case "percentage":
                capacity = np.sum(items, dtype=int) * self.capacity_ratio
            case "fixed":
                capacity = self._max_capacity

        variables = [capacity, *items]
        return Instance(variables)

    def extract_features(self, instance: Instance) -> tuple:
        """Extract the features of the instance based on the BPP domain.
           For the BPP the features are:
           N, Capacity, MeanWeights, MedianWeights, VarianceWeights, MaxWeight,
           MinWeight, Huge, Large, Medium, Small, Tiny

        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Tuple[float]: Values of each feature
        """
        capacity = instance.variables[0]
        _vars = np.asarray(instance.variables[1:])
        vars_norm = _vars / capacity
        huge = sum(k > 0.5 for k in vars_norm) / self._dimension
        large = sum(0.5 >= k > 1 / 3 for k in vars_norm) / self._dimension
        medium = sum(1 / 3 >= k > 0.25 for k in vars_norm) / self._dimension
        small = sum(0.25 >= k for k in vars_norm) / self._dimension
        tiny = sum(0.1 >= k for k in vars_norm) / self._dimension
        return (
            np.mean(vars_norm),
            np.std(vars_norm),
            np.median(vars_norm),
            np.max(vars_norm),
            np.min(vars_norm),
            tiny,
            small,
            medium,
            large,
            huge,
        )

    def extract_features_as_dict(self, instance: Instance) -> Mapping[str, float]:
        """Creates a dictionary with the features of the instance.
        The key are the names of each feature and the values are
        the values extracted from instance.

        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Mapping[str, float]: Dictionary with the names/values of each feature
        """
        names = "mean,std,median,max,min,tiny,small,medium,large,huge"
        features = self.extract_features(instance)
        return {k: v for k, v in zip(names.split(","), features)}

    def from_instance(self, instance: Instance) -> BPP:
        items = instance.variables[1:]
        capacity = int(instance.variables[0])
        # Sets the capacity according to the method
        match self.capacity_approach:
            case "percentage":
                capacity = np.sum(items) * self.capacity_ratio
            case "fixed":
                capacity = self._max_capacity

        # The BPP capacity must be updated JIC
        instance.variables[0] = capacity
        return BPP(items=items, capacity=int(capacity))

extract_features(instance)

Extract the features of the instance based on the BPP domain. For the BPP the features are: N, Capacity, MeanWeights, MedianWeights, VarianceWeights, MaxWeight, MinWeight, Huge, Large, Medium, Small, Tiny

Parameters:
  • instance (Instance) –

    Instance to extract the features from

Returns:
  • tuple

    Tuple[float]: Values of each feature

Source code in digneapy/domains/bpp.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def extract_features(self, instance: Instance) -> tuple:
    """Extract the features of the instance based on the BPP domain.
       For the BPP the features are:
       N, Capacity, MeanWeights, MedianWeights, VarianceWeights, MaxWeight,
       MinWeight, Huge, Large, Medium, Small, Tiny

    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Tuple[float]: Values of each feature
    """
    capacity = instance.variables[0]
    _vars = np.asarray(instance.variables[1:])
    vars_norm = _vars / capacity
    huge = sum(k > 0.5 for k in vars_norm) / self._dimension
    large = sum(0.5 >= k > 1 / 3 for k in vars_norm) / self._dimension
    medium = sum(1 / 3 >= k > 0.25 for k in vars_norm) / self._dimension
    small = sum(0.25 >= k for k in vars_norm) / self._dimension
    tiny = sum(0.1 >= k for k in vars_norm) / self._dimension
    return (
        np.mean(vars_norm),
        np.std(vars_norm),
        np.median(vars_norm),
        np.max(vars_norm),
        np.min(vars_norm),
        tiny,
        small,
        medium,
        large,
        huge,
    )

extract_features_as_dict(instance)

Creates a dictionary with the features of the instance. The key are the names of each feature and the values are the values extracted from instance.

Parameters:
  • instance (Instance) –

    Instance to extract the features from

Returns:
  • Mapping[str, float]

    Mapping[str, float]: Dictionary with the names/values of each feature

Source code in digneapy/domains/bpp.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def extract_features_as_dict(self, instance: Instance) -> Mapping[str, float]:
    """Creates a dictionary with the features of the instance.
    The key are the names of each feature and the values are
    the values extracted from instance.

    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Mapping[str, float]: Dictionary with the names/values of each feature
    """
    names = "mean,std,median,max,min,tiny,small,medium,large,huge"
    features = self.extract_features(instance)
    return {k: v for k, v in zip(names.split(","), features)}

generate_instance()

Generates a new instances for the BPP domain

Returns:
  • Instance( Instance ) –

    New randomly generated instance

Source code in digneapy/domains/bpp.py
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def generate_instance(self) -> Instance:
    """Generates a new instances for the BPP domain

    Returns:
        Instance: New randomly generated instance
    """
    items = self._rng.integers(
        low=self._min_i, high=self._max_i, size=self._dimension, dtype=int
    )
    self._rng.shuffle(items)

    capacity = 0
    # Sets the capacity according to the method
    match self.capacity_approach:
        case "evolved":
            capacity = self._rng.integers(1, self._max_capacity)
        case "percentage":
            capacity = np.sum(items, dtype=int) * self.capacity_ratio
        case "fixed":
            capacity = self._max_capacity

    variables = [capacity, *items]
    return Instance(variables)

Knapsack

Bases: Problem

Source code in digneapy/domains/kp.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
class Knapsack(Problem):
    def __init__(
        self,
        profits: Sequence[int],
        weights: Sequence[int],
        capacity: int = 0,
        seed: int = 42,
        *args,
        **kwargs,
    ):
        assert len(profits) == len(weights)
        assert capacity > 0

        bounds = list((0, 1) for _ in range(len(profits)))
        super().__init__(dimension=len(profits), bounds=bounds, name="KP", seed=seed)

        self.weights = weights
        self.profits = profits
        self.capacity = capacity
        self.penalty_factor = 100.0

    def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
        """Evaluates the candidate individual with the information of the Knapsack

        Args:
            individual (Sequence | Solution): Individual to evaluate

        Raises:
            ValueError: Raises an error if the len(individual) != len(profits or weights)

        Returns:
            Tuple[float]: Profit
        """

        if len(individual) != len(self.profits):
            msg = f"Mismatch between individual variables and instance variables in {self.__class__.__name__}"
            raise ValueError(msg)

        profit = np.dot(individual, self.profits)
        packed = np.dot(individual, self.weights)
        difference = max(0, packed - self.capacity)
        penalty = self.penalty_factor * difference
        profit -= penalty

        return (profit,)

    def __call__(self, individual: Sequence | Solution) -> tuple[float]:
        return self.evaluate(individual)

    def __repr__(self):
        return f"KP<n={len(self.profits)},C={self.capacity}>"

    def __len__(self):
        return len(self.weights)

    def create_solution(self) -> Solution:
        chromosome = self._rng.integers(low=0, high=1, size=self._dimension)
        return Solution(chromosome=chromosome)

    def to_file(self, filename: str = "instance.kp"):
        with open(filename, "w") as file:
            file.write(f"{len(self)}\t{self.capacity}\n\n")
            content = "\n".join(
                f"{w_i}\t{p_i}" for w_i, p_i in zip(self.weights, self.profits)
            )
            file.write(content)

    @classmethod
    def from_file(cls, filename: str):
        content = np.loadtxt(filename, dtype=int)
        capacity = content[0][1]
        weights, profits = content[1:, 0], content[1:, 1]
        return cls(profits=profits, weights=weights, capacity=capacity)

    def to_instance(self) -> Instance:
        _vars = [self.capacity] + list(
            itertools.chain.from_iterable([*zip(self.weights, self.profits)])
        )
        return Instance(variables=_vars)

evaluate(individual)

Evaluates the candidate individual with the information of the Knapsack

Parameters:
  • individual (Sequence | Solution) –

    Individual to evaluate

Raises:
  • ValueError

    Raises an error if the len(individual) != len(profits or weights)

Returns:
  • tuple[float]

    Tuple[float]: Profit

Source code in digneapy/domains/kp.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
    """Evaluates the candidate individual with the information of the Knapsack

    Args:
        individual (Sequence | Solution): Individual to evaluate

    Raises:
        ValueError: Raises an error if the len(individual) != len(profits or weights)

    Returns:
        Tuple[float]: Profit
    """

    if len(individual) != len(self.profits):
        msg = f"Mismatch between individual variables and instance variables in {self.__class__.__name__}"
        raise ValueError(msg)

    profit = np.dot(individual, self.profits)
    packed = np.dot(individual, self.weights)
    difference = max(0, packed - self.capacity)
    penalty = self.penalty_factor * difference
    profit -= penalty

    return (profit,)

KnapsackDomain

Bases: Domain

Source code in digneapy/domains/kp.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
class KnapsackDomain(Domain):
    __capacity_approaches = ("evolved", "percentage", "fixed")

    def __init__(
        self,
        dimension: int = 50,
        min_p: int = 1,
        min_w: int = 1,
        max_p: int = 1_000,
        max_w: int = 1_000,
        capacity_approach: str = "evolved",
        max_capacity: int = int(1e7),
        capacity_ratio: float = 0.8,
        seed: int = 42,
    ):
        self.min_p = min_p
        self.min_w = min_w
        self.max_p = max_p
        self.max_w = max_w
        self.max_capacity = max_capacity

        if capacity_ratio < 0.0 or capacity_ratio > 1.0 or not float(capacity_ratio):
            self.capacity_ratio = 0.8  # Default
            msg = "The capacity ratio must be a float number in the range [0.0-1.0]. Set as 0.8 as default."
            print(msg)
        else:
            self.capacity_ratio = capacity_ratio

        if capacity_approach not in self.__capacity_approaches:
            msg = f"The capacity approach {capacity_approach} is not available. Please choose between {self.__capacity_approaches}. Evolved approach set as default."
            print(msg)
            self._capacity_approach = "evolved"
        else:
            self._capacity_approach = capacity_approach

        bounds = [(1.0, self.max_capacity)] + [
            (min_w, max_w) if i % 2 == 0 else (min_p, max_p)
            for i in range(2 * dimension)
        ]
        super().__init__(
            dimension=dimension,
            bounds=bounds,
            name="KP",
            feat_names="capacity,max_p,max_w,min_p,min_w,avg_eff,mean,std".split(","),
            seed=seed,
        )

    @property
    def capacity_approach(self):
        return self._capacity_approach

    @capacity_approach.setter
    def capacity_approach(self, app):
        """Setter for the Maximum capacity generator approach.
        It forces to update the variable to one of the specify values

        Args:
            app (str): Approach for setting the capacity. It should be fixed, evolved or percentage.
        """
        if app not in self.__capacity_approaches:
            msg = f"The capacity approach {app} is not available. Please choose between {self.__capacity_approaches}. Evolved approach set as default."
            print(msg)
            self._capacity_approach = "evolved"
        else:
            self._capacity_approach = app

    def generate_instance(self) -> Instance:
        """Generates a new instances for the domain

        Returns:
            Instance: New randomly generated instance
        """
        weights = self._rng.integers(
            low=self.min_w, high=self.max_w, size=self.dimension
        )
        profits = self._rng.integers(
            low=self.min_p, high=self.max_p, size=self.dimension
        )

        capacity = 0
        # Sets the capacity according to the method
        if self.capacity_approach == "evolved":
            capacity = self._rng.integers(1, self.max_capacity)
        elif self.capacity_approach == "percentage":
            capacity = np.sum(weights, dtype=int) * self.capacity_ratio
        elif self.capacity_approach == "fixed":
            capacity = self.max_capacity

        variables = [int(capacity)] + list(itertools.chain(*zip(weights, profits)))

        return Instance(variables)

    def extract_features(self, instance: Instance) -> tuple:
        """Extract the features of the instance based on the domain

        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Tuple[float]: Values of each feature
        """
        _vars = np.asarray(instance.variables[1:])
        weights = _vars[0::2]
        profits = _vars[1::2]
        avg_eff = np.sum([p / w for p, w in zip(profits, weights)]) / len(_vars)
        capacity = instance.variables[0]
        # Sets the capacity according to the method
        if self.capacity_approach == "percentage":
            capacity = np.sum(weights) * self.capacity_ratio
        elif self._capacity_approach == "fixed":
            capacity = self.max_capacity

        return (
            int(capacity),
            np.max(profits),
            np.max(weights),
            np.min(profits),
            np.min(weights),
            avg_eff,
            np.mean(_vars),
            np.std(_vars),
        )

    def extract_features_as_dict(self, instance: Instance) -> Mapping[str, float]:
        """Creates a dictionary with the features of the instance.
        The key are the names of each feature and the values are
        the values extracted from instance.

        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Mapping[str, float]: Dictionary with the names/values of each feature
        """
        if len(instance.features) == len(self.feat_names):
            return {k: v for k, v in zip(self.feat_names, instance.features)}
        else:
            features = self.extract_features(instance)
            return {k: v for k, v in zip(self.feat_names, features)}

    def from_instance(self, instance: Instance) -> Knapsack:
        variables = instance.variables
        capacity = variables[0]
        weights = variables[1::2]
        profits = variables[2::2]

        # Sets the capacity according to the method
        if self.capacity_approach == "percentage":
            capacity = np.sum(weights) * self.capacity_ratio
            instance.variables[0] = capacity
        elif self.capacity_approach == "fixed":
            capacity = self.max_capacity
            instance.variables[0] = capacity

        return Knapsack(profits=profits, weights=weights, capacity=int(capacity))

extract_features(instance)

Extract the features of the instance based on the domain

Parameters:
  • instance (Instance) –

    Instance to extract the features from

Returns:
  • tuple

    Tuple[float]: Values of each feature

Source code in digneapy/domains/kp.py
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def extract_features(self, instance: Instance) -> tuple:
    """Extract the features of the instance based on the domain

    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Tuple[float]: Values of each feature
    """
    _vars = np.asarray(instance.variables[1:])
    weights = _vars[0::2]
    profits = _vars[1::2]
    avg_eff = np.sum([p / w for p, w in zip(profits, weights)]) / len(_vars)
    capacity = instance.variables[0]
    # Sets the capacity according to the method
    if self.capacity_approach == "percentage":
        capacity = np.sum(weights) * self.capacity_ratio
    elif self._capacity_approach == "fixed":
        capacity = self.max_capacity

    return (
        int(capacity),
        np.max(profits),
        np.max(weights),
        np.min(profits),
        np.min(weights),
        avg_eff,
        np.mean(_vars),
        np.std(_vars),
    )

extract_features_as_dict(instance)

Creates a dictionary with the features of the instance. The key are the names of each feature and the values are the values extracted from instance.

Parameters:
  • instance (Instance) –

    Instance to extract the features from

Returns:
  • Mapping[str, float]

    Mapping[str, float]: Dictionary with the names/values of each feature

Source code in digneapy/domains/kp.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def extract_features_as_dict(self, instance: Instance) -> Mapping[str, float]:
    """Creates a dictionary with the features of the instance.
    The key are the names of each feature and the values are
    the values extracted from instance.

    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Mapping[str, float]: Dictionary with the names/values of each feature
    """
    if len(instance.features) == len(self.feat_names):
        return {k: v for k, v in zip(self.feat_names, instance.features)}
    else:
        features = self.extract_features(instance)
        return {k: v for k, v in zip(self.feat_names, features)}

generate_instance()

Generates a new instances for the domain

Returns:
  • Instance( Instance ) –

    New randomly generated instance

Source code in digneapy/domains/kp.py
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def generate_instance(self) -> Instance:
    """Generates a new instances for the domain

    Returns:
        Instance: New randomly generated instance
    """
    weights = self._rng.integers(
        low=self.min_w, high=self.max_w, size=self.dimension
    )
    profits = self._rng.integers(
        low=self.min_p, high=self.max_p, size=self.dimension
    )

    capacity = 0
    # Sets the capacity according to the method
    if self.capacity_approach == "evolved":
        capacity = self._rng.integers(1, self.max_capacity)
    elif self.capacity_approach == "percentage":
        capacity = np.sum(weights, dtype=int) * self.capacity_ratio
    elif self.capacity_approach == "fixed":
        capacity = self.max_capacity

    variables = [int(capacity)] + list(itertools.chain(*zip(weights, profits)))

    return Instance(variables)

TSP

Bases: Problem

Symmetric Travelling Salesman Problem

Source code in digneapy/domains/tsp.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class TSP(Problem):
    """Symmetric Travelling Salesman Problem"""

    def __init__(
        self,
        nodes: int,
        coords: Tuple[Tuple[int, int], ...],
        seed: int = 42,
        *args,
        **kwargs,
    ):
        """Creates a new Symmetric Travelling Salesman Problem

        Args:
            nodes (int): Number of nodes/cities in the instance to solve
            coords (Tuple[Tuple[int, int], ...]): Coordinates of each node/city.
        """
        self._nodes = nodes
        self._coords = np.array(coords)
        x_min, y_min = np.min(self._coords, axis=0)
        x_max, y_max = np.max(self._coords, axis=0)
        bounds = list(((x_min, y_min), (x_max, y_max)) for _ in range(self._nodes))
        super().__init__(dimension=nodes, bounds=bounds, name="TSP", seed=seed)

        self._distances = np.zeros((self._nodes, self._nodes))
        for i in range(self._nodes):
            for j in range(i + 1, self._nodes):
                self._distances[i][j] = np.linalg.norm(
                    self._coords[i] - self._coords[j]
                )
                self._distances[j][i] = self._distances[i][j]

    def __evaluate_constraints(self, individual: Sequence | Solution) -> bool:
        counter = Counter(individual)
        if any(counter[c] != 1 for c in counter if c != 0) or (
            individual[0] != 0 or individual[-1] != 0
        ):
            return False
        return True

    def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
        """Evaluates the candidate individual with the information of the Travelling Salesmas Problem.

        The fitness of the solution is the fraction of the sum of the distances of the tour
        Args:
            individual (Sequence | Solution): Individual to evaluate

        Returns:
            Tuple[float]: Fitness
        """
        if len(individual) != self._nodes + 1:
            msg = f"Mismatch between individual variables ({len(individual)}) and instance variables ({self._nodes}) in {self.__class__.__name__}. A solution for the TSP must be a sequence of len {self._nodes + 1}"
            raise ValueError(msg)

        penalty: np.float64 = np.float64(0)

        if self.__evaluate_constraints(individual):
            distance: float = 0.0
            for i in range(len(individual) - 2):
                distance += self._distances[individual[i]][individual[i + 1]]

            fitness = 1.0 / distance
        else:
            fitness = 2.938736e-39  # --> 1.0 / np.float.max
            penalty = np.finfo(np.float64).max

        if isinstance(individual, Solution):
            individual.fitness = fitness
            individual.objectives = (fitness,)
            individual.constraints = (penalty,)

        return (fitness,)

    def __call__(self, individual: Sequence | Solution) -> tuple[float]:
        return self.evaluate(individual)

    def __repr__(self):
        return f"TSP<n={self._nodes}>"

    def __len__(self):
        return self._nodes

    def create_solution(self) -> Solution:
        items = [0] + list(range(1, self._nodes)) + [0]
        return Solution(chromosome=items)

    def to_file(self, filename: str = "instance.tsp"):
        with open(filename, "w") as file:
            file.write(f"{len(self)}\n\n")
            content = "\n".join(f"{x}\t{y}" for (x, y) in self._coords)
            file.write(content)

    @classmethod
    def from_file(cls, filename: str) -> Self:
        with open(filename) as f:
            lines = f.readlines()
            lines = [line.rstrip() for line in lines]

        nodes = int(lines[0])
        coords = []
        for line in lines[2:]:
            x, y = line.split()
            coords.append((int(x), int(y)))

        return cls(nodes=nodes, coords=tuple(coords))

    def to_instance(self) -> Instance:
        return Instance(variables=self._coords.flatten())

__init__(nodes, coords, seed=42, *args, **kwargs)

Creates a new Symmetric Travelling Salesman Problem

Parameters:
  • nodes (int) –

    Number of nodes/cities in the instance to solve

  • coords (Tuple[Tuple[int, int], ...]) –

    Coordinates of each node/city.

Source code in digneapy/domains/tsp.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def __init__(
    self,
    nodes: int,
    coords: Tuple[Tuple[int, int], ...],
    seed: int = 42,
    *args,
    **kwargs,
):
    """Creates a new Symmetric Travelling Salesman Problem

    Args:
        nodes (int): Number of nodes/cities in the instance to solve
        coords (Tuple[Tuple[int, int], ...]): Coordinates of each node/city.
    """
    self._nodes = nodes
    self._coords = np.array(coords)
    x_min, y_min = np.min(self._coords, axis=0)
    x_max, y_max = np.max(self._coords, axis=0)
    bounds = list(((x_min, y_min), (x_max, y_max)) for _ in range(self._nodes))
    super().__init__(dimension=nodes, bounds=bounds, name="TSP", seed=seed)

    self._distances = np.zeros((self._nodes, self._nodes))
    for i in range(self._nodes):
        for j in range(i + 1, self._nodes):
            self._distances[i][j] = np.linalg.norm(
                self._coords[i] - self._coords[j]
            )
            self._distances[j][i] = self._distances[i][j]

evaluate(individual)

Evaluates the candidate individual with the information of the Travelling Salesmas Problem.

The fitness of the solution is the fraction of the sum of the distances of the tour Args: individual (Sequence | Solution): Individual to evaluate

Returns:
  • tuple[float]

    Tuple[float]: Fitness

Source code in digneapy/domains/tsp.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def evaluate(self, individual: Sequence | Solution) -> tuple[float]:
    """Evaluates the candidate individual with the information of the Travelling Salesmas Problem.

    The fitness of the solution is the fraction of the sum of the distances of the tour
    Args:
        individual (Sequence | Solution): Individual to evaluate

    Returns:
        Tuple[float]: Fitness
    """
    if len(individual) != self._nodes + 1:
        msg = f"Mismatch between individual variables ({len(individual)}) and instance variables ({self._nodes}) in {self.__class__.__name__}. A solution for the TSP must be a sequence of len {self._nodes + 1}"
        raise ValueError(msg)

    penalty: np.float64 = np.float64(0)

    if self.__evaluate_constraints(individual):
        distance: float = 0.0
        for i in range(len(individual) - 2):
            distance += self._distances[individual[i]][individual[i + 1]]

        fitness = 1.0 / distance
    else:
        fitness = 2.938736e-39  # --> 1.0 / np.float.max
        penalty = np.finfo(np.float64).max

    if isinstance(individual, Solution):
        individual.fitness = fitness
        individual.objectives = (fitness,)
        individual.constraints = (penalty,)

    return (fitness,)

TSPDomain

Bases: Domain

Domain to generate instances for the Symmetric Travelling Salesman Problem.

Source code in digneapy/domains/tsp.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
class TSPDomain(Domain):
    """Domain to generate instances for the Symmetric Travelling Salesman Problem."""

    def __init__(
        self,
        dimension: int = 100,
        x_range: Tuple[int, int] = (0, 1000),
        y_range: Tuple[int, int] = (0, 1000),
        seed: int = 42,
    ):
        """Creates a new TSPDomain to generate instances for the Symmetric Travelling Salesman Problem

        Args:
            dimension (int, optional): Dimension of the instances to generate. Defaults to 100.
            x_range (Tuple[int, int], optional): Ranges for the Xs coordinates of each node/city. Defaults to (0, 1000).
            y_range (Tuple[int, int], optional): Ranges for the ys coordinates of each node/city. Defaults to (0, 1000).

        Raises:
            ValueError: If dimension is < 0
            ValueError: If x_range OR y_range does not have 2 dimensions each
            ValueError: If minimum ranges are greater than maximum ranges
        """
        if dimension < 0:
            raise ValueError(f"Expected dimension > 0 got {dimension}")
        if len(x_range) != 2 or len(y_range) != 2:
            raise ValueError(
                f"Expected x_range and y_range to be a tuple with only to integers. Got: x_range = {x_range} and y_range = {y_range}"
            )
        x_min, x_max = x_range
        y_min, y_max = y_range
        if x_min < 0 or x_max <= x_min:
            raise ValueError(
                f"Expected x_range to be (x_min, x_max) where x_min >= 0 and x_max > x_min. Got: x_range {x_range}"
            )
        if y_min < 0 or y_max <= y_min:
            raise ValueError(
                f"Expected y_range to be (y_min, y_max) where y_min >= 0 and y_max > y_min. Got: y_range {y_range}"
            )

        self._x_range = x_range
        self._y_range = y_range
        __bounds = [
            (x_min, x_max) if i % 2 == 0 else (y_min, y_max)
            for i in range(dimension * 2)
        ]

        super().__init__(dimension=dimension, bounds=__bounds, name="TSP", seed=seed)

    def generate_instance(self) -> Instance:
        """Generates a new instances for the TSP domain

        Returns:
            Instance: New randomly generated instance
        """
        coords = self._rng.integers(
            low=(self._x_range[0], self._y_range[0]),
            high=(self._x_range[1], self._y_range[1]),
            size=(self.dimension, 2),
            dtype=int,
        )
        coords = coords.flatten()
        return Instance(coords)

    def extract_features(self, instance: Instance) -> tuple:
        """Extract the features of the instance based on the TSP domain.
           For the TSP the features are:
            - Size
            - Standard deviation of the distances
            - Centroid coordinates
            - Radius of the instance
            - Fraction of distinct instances
            - Rectangular area
            - Variance of the normalised nearest neighbours distances
            - Coefficient of variantion of the nearest neighbours distances
            - Cluster ratio
            - Mean cluster radius
        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Tuple[float]: Values of each feature
        """

        tsp = self.from_instance(instance)
        xs = instance[0::2]
        ys = instance[1::2]
        area = (max(xs) - min(xs)) * (max(ys) - min(ys))
        std_distances = np.std(tsp._distances)
        centroid = (np.mean(xs), np.mean(ys))  # (0.01 * np.sum(xs), 0.01 * np.sum(ys))

        centroid_distance = [np.linalg.norm(city - centroid) for city in tsp._coords]
        radius = np.mean(centroid_distance)

        fraction = len(np.unique(tsp._distances)) / (len(tsp._distances) / 2)
        # Top five only
        norm_distances = np.sort(tsp._distances)[::-1][:5] / np.max(tsp._distances)

        variance_nnds = np.var(norm_distances)
        variation_nnds = variance_nnds / np.mean(norm_distances)

        dbscan = DBSCAN()
        dbscan.fit(tsp._coords)
        cluster_ratio = len(set(dbscan.labels_)) / self.dimension
        # Cluster radius
        mean_cluster_radius = 0.0
        for label_id in dbscan.labels_:
            points_in_cluster = tsp._coords[dbscan.labels_ == label_id]
            cluster_centroid = (
                np.mean(points_in_cluster[:, 0]),
                np.mean(points_in_cluster[:, 1]),
            )
            mean_cluster_radius = np.mean(
                [np.linalg.norm(city - cluster_centroid) for city in tsp._coords]
            )
        mean_cluster_radius /= len(set(dbscan.labels_))

        return (
            self.dimension,
            std_distances,
            centroid[0],
            centroid[1],
            radius,
            fraction,
            area,
            variance_nnds,
            variation_nnds,
            cluster_ratio,
            mean_cluster_radius,
        )

    def extract_features_as_dict(self, instance: Instance) -> Mapping[str, float]:
        """Creates a dictionary with the features of the instance.
        The key are the names of each feature and the values are
        the values extracted from instance.

        Args:
            instance (Instance): Instance to extract the features from

        Returns:
            Mapping[str, float]: Dictionary with the names/values of each feature
        """
        names = "size,std_distances,centroid_x,centroid_y,radius,fraction_distances,area,variance_nnNds,variation_nnNds,cluster_ratio,mean_cluster_radius"
        features = self.extract_features(instance)
        return {k: v for k, v in zip(names.split(","), features)}

    def from_instance(self, instance: Instance) -> TSP:
        n_nodes = len(instance) // 2
        coords = tuple([*zip(instance[::2], instance[1::2])])
        return TSP(nodes=n_nodes, coords=coords)

__init__(dimension=100, x_range=(0, 1000), y_range=(0, 1000), seed=42)

Creates a new TSPDomain to generate instances for the Symmetric Travelling Salesman Problem

Parameters:
  • dimension (int, default: 100 ) –

    Dimension of the instances to generate. Defaults to 100.

  • x_range (Tuple[int, int], default: (0, 1000) ) –

    Ranges for the Xs coordinates of each node/city. Defaults to (0, 1000).

  • y_range (Tuple[int, int], default: (0, 1000) ) –

    Ranges for the ys coordinates of each node/city. Defaults to (0, 1000).

Raises:
  • ValueError

    If dimension is < 0

  • ValueError

    If x_range OR y_range does not have 2 dimensions each

  • ValueError

    If minimum ranges are greater than maximum ranges

Source code in digneapy/domains/tsp.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def __init__(
    self,
    dimension: int = 100,
    x_range: Tuple[int, int] = (0, 1000),
    y_range: Tuple[int, int] = (0, 1000),
    seed: int = 42,
):
    """Creates a new TSPDomain to generate instances for the Symmetric Travelling Salesman Problem

    Args:
        dimension (int, optional): Dimension of the instances to generate. Defaults to 100.
        x_range (Tuple[int, int], optional): Ranges for the Xs coordinates of each node/city. Defaults to (0, 1000).
        y_range (Tuple[int, int], optional): Ranges for the ys coordinates of each node/city. Defaults to (0, 1000).

    Raises:
        ValueError: If dimension is < 0
        ValueError: If x_range OR y_range does not have 2 dimensions each
        ValueError: If minimum ranges are greater than maximum ranges
    """
    if dimension < 0:
        raise ValueError(f"Expected dimension > 0 got {dimension}")
    if len(x_range) != 2 or len(y_range) != 2:
        raise ValueError(
            f"Expected x_range and y_range to be a tuple with only to integers. Got: x_range = {x_range} and y_range = {y_range}"
        )
    x_min, x_max = x_range
    y_min, y_max = y_range
    if x_min < 0 or x_max <= x_min:
        raise ValueError(
            f"Expected x_range to be (x_min, x_max) where x_min >= 0 and x_max > x_min. Got: x_range {x_range}"
        )
    if y_min < 0 or y_max <= y_min:
        raise ValueError(
            f"Expected y_range to be (y_min, y_max) where y_min >= 0 and y_max > y_min. Got: y_range {y_range}"
        )

    self._x_range = x_range
    self._y_range = y_range
    __bounds = [
        (x_min, x_max) if i % 2 == 0 else (y_min, y_max)
        for i in range(dimension * 2)
    ]

    super().__init__(dimension=dimension, bounds=__bounds, name="TSP", seed=seed)

extract_features(instance)

Extract the features of the instance based on the TSP domain. For the TSP the features are: - Size - Standard deviation of the distances - Centroid coordinates - Radius of the instance - Fraction of distinct instances - Rectangular area - Variance of the normalised nearest neighbours distances - Coefficient of variantion of the nearest neighbours distances - Cluster ratio - Mean cluster radius Args: instance (Instance): Instance to extract the features from

Returns:
  • tuple

    Tuple[float]: Values of each feature

Source code in digneapy/domains/tsp.py
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def extract_features(self, instance: Instance) -> tuple:
    """Extract the features of the instance based on the TSP domain.
       For the TSP the features are:
        - Size
        - Standard deviation of the distances
        - Centroid coordinates
        - Radius of the instance
        - Fraction of distinct instances
        - Rectangular area
        - Variance of the normalised nearest neighbours distances
        - Coefficient of variantion of the nearest neighbours distances
        - Cluster ratio
        - Mean cluster radius
    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Tuple[float]: Values of each feature
    """

    tsp = self.from_instance(instance)
    xs = instance[0::2]
    ys = instance[1::2]
    area = (max(xs) - min(xs)) * (max(ys) - min(ys))
    std_distances = np.std(tsp._distances)
    centroid = (np.mean(xs), np.mean(ys))  # (0.01 * np.sum(xs), 0.01 * np.sum(ys))

    centroid_distance = [np.linalg.norm(city - centroid) for city in tsp._coords]
    radius = np.mean(centroid_distance)

    fraction = len(np.unique(tsp._distances)) / (len(tsp._distances) / 2)
    # Top five only
    norm_distances = np.sort(tsp._distances)[::-1][:5] / np.max(tsp._distances)

    variance_nnds = np.var(norm_distances)
    variation_nnds = variance_nnds / np.mean(norm_distances)

    dbscan = DBSCAN()
    dbscan.fit(tsp._coords)
    cluster_ratio = len(set(dbscan.labels_)) / self.dimension
    # Cluster radius
    mean_cluster_radius = 0.0
    for label_id in dbscan.labels_:
        points_in_cluster = tsp._coords[dbscan.labels_ == label_id]
        cluster_centroid = (
            np.mean(points_in_cluster[:, 0]),
            np.mean(points_in_cluster[:, 1]),
        )
        mean_cluster_radius = np.mean(
            [np.linalg.norm(city - cluster_centroid) for city in tsp._coords]
        )
    mean_cluster_radius /= len(set(dbscan.labels_))

    return (
        self.dimension,
        std_distances,
        centroid[0],
        centroid[1],
        radius,
        fraction,
        area,
        variance_nnds,
        variation_nnds,
        cluster_ratio,
        mean_cluster_radius,
    )

extract_features_as_dict(instance)

Creates a dictionary with the features of the instance. The key are the names of each feature and the values are the values extracted from instance.

Parameters:
  • instance (Instance) –

    Instance to extract the features from

Returns:
  • Mapping[str, float]

    Mapping[str, float]: Dictionary with the names/values of each feature

Source code in digneapy/domains/tsp.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def extract_features_as_dict(self, instance: Instance) -> Mapping[str, float]:
    """Creates a dictionary with the features of the instance.
    The key are the names of each feature and the values are
    the values extracted from instance.

    Args:
        instance (Instance): Instance to extract the features from

    Returns:
        Mapping[str, float]: Dictionary with the names/values of each feature
    """
    names = "size,std_distances,centroid_x,centroid_y,radius,fraction_distances,area,variance_nnNds,variation_nnNds,cluster_ratio,mean_cluster_radius"
    features = self.extract_features(instance)
    return {k: v for k, v in zip(names.split(","), features)}

generate_instance()

Generates a new instances for the TSP domain

Returns:
  • Instance( Instance ) –

    New randomly generated instance

Source code in digneapy/domains/tsp.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def generate_instance(self) -> Instance:
    """Generates a new instances for the TSP domain

    Returns:
        Instance: New randomly generated instance
    """
    coords = self._rng.integers(
        low=(self._x_range[0], self._y_range[0]),
        high=(self._x_range[1], self._y_range[1]),
        size=(self.dimension, 2),
        dtype=int,
    )
    coords = coords.flatten()
    return Instance(coords)