@File : _base_archive.py @Time : 2024/06/07 12:17:34 @Author : Alejandro Marrero @Version : 1.0 @Contact : amarrerd@ull.edu.es @License : (C)Copyright 2024, Alejandro Marrero @Desc : None

Archive

Class Archive Stores a collection of diverse Instances

Source code in digneapy/archives/_base_archive.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
class Archive:
    """Class Archive
    Stores a collection of diverse Instances
    """

    def __init__(
        self,
        threshold: float,
        instances: Optional[Iterable[Instance]] = None,
        dtype=np.float64,
    ):
        """Creates an instance of a Archive (unstructured) for QD algorithms

        Args:
            threshold (float): Minimum value of sparseness to include an Instance into the archive.
            instances (Iterable[Instance], optional): Instances to initialise the archive. Defaults to None.
        """
        if instances:
            self._instances = list(i for i in instances)
        else:
            self._instances = []

        self._threshold = threshold
        self._dtype = dtype

    @property
    def instances(self):
        return self._instances

    @property
    def threshold(self):
        return self._threshold

    @threshold.setter
    def threshold(self, t: float):
        try:
            t_f = float(t)
        except Exception:
            msg = f"The threshold value {t} is not a float in 'threshold' setter of class {self.__class__.__name__}"
            raise TypeError(msg)
        self._threshold = t_f

    def __iter__(self):
        return iter(self._instances)

    def __str__(self):
        return f"Archive(threshold={self._threshold},data=(|{len(self)}|))"

    def __repr__(self):
        return f"Archive(threshold={self._threshold},data=(|{len(self)}|))"

    def __array__(self, dtype=Instance, copy=True) -> np.ndarray:
        """Creates a ndarray with the descriptors

        >>> import numpy as np
        >>> descriptors = [list(range(d, d + 5)) for d in range(10)]
        >>> archive = Archive(descriptors)
        >>> np_archive = np.array(archive)
        >>> assert len(np_archive) == len(archive)
        >>> assert type(np_archive) == type(np.zeros(1))
        """
        return np.array(self._instances, dtype=Instance, copy=copy)

    def __eq__(self, other):
        """Compares whether to Archives are equal

        >>> import copy
        >>> variables = [list(range(d, d + 5)) for d in range(10)]
        >>> instances = [Instance(variables=v, s=1.0) for v in variables]
        >>> archive = Archive(threshold=0.0, instances=instances)
        >>> empty_archive = Archive(threshold=0.0)

        >>> a1 = copy.copy(archive)
        >>> assert a1 == archive
        >>> assert empty_archive != archive
        """
        return len(self) == len(other) and all(a == b for a, b in zip(self, other))

    def __hash__(self):
        from functools import reduce

        hashes = (hash(i) for i in self.instances)
        return reduce(lambda a, b: a ^ b, hashes, 0)

    def __bool__(self):
        """Returns True if len(self) > 1

        >>> descriptors = [list(range(d, d + 5)) for d in range(10)]
        >>> archive = Archive(threshold=0.0, instances=descriptors)
        >>> empty_archive = Archive(threshold=0.0)

        >>> assert archive
        >>> assert not empty_archive
        """
        return len(self) != 0

    def __len__(self):
        return len(self.instances)

    def __getitem__(self, key):
        if isinstance(key, slice):
            cls = type(self)  # To facilitate subclassing
            return cls(self._threshold, self.instances[key])
        index = operator.index(key)
        return self.instances[index]

    def append(self, i: Instance):
        if i.s > self.threshold:
            self.instances.append(i)

    def extend(self, iterable: Iterable[Instance]):
        """Extends the current archive with all the individuals inside iterable that have
        a sparseness value greater than the archive threshold.

        Args:
            iterable (Iterable[Instance]): Iterable of instances to be include in the archive.
        """
        self.instances.extend(i for i in iterable if i.s >= self._threshold)

    def __format__(self, fmt_spec=""):
        variables = self
        outer_fmt = "({})"
        components = (format(c, fmt_spec) for c in variables)
        return outer_fmt.format(", ".join(components))

    def asdict(self) -> dict:
        return {
            "threshold": self._threshold,
            "instances": {
                i: instance.asdict() for i, instance in enumerate(self.instances)
            },
        }

    def to_json(self) -> str:
        """Converts the archive into a JSON object

        Returns:
            str: JSON str of the archive content
        """

        return json.dumps(self.asdict(), indent=4)

__array__(dtype=Instance, copy=True)

Creates a ndarray with the descriptors

import numpy as np descriptors = [list(range(d, d + 5)) for d in range(10)] archive = Archive(descriptors) np_archive = np.array(archive) assert len(np_archive) == len(archive) assert type(np_archive) == type(np.zeros(1))

Source code in digneapy/archives/_base_archive.py
74
75
76
77
78
79
80
81
82
83
84
def __array__(self, dtype=Instance, copy=True) -> np.ndarray:
    """Creates a ndarray with the descriptors

    >>> import numpy as np
    >>> descriptors = [list(range(d, d + 5)) for d in range(10)]
    >>> archive = Archive(descriptors)
    >>> np_archive = np.array(archive)
    >>> assert len(np_archive) == len(archive)
    >>> assert type(np_archive) == type(np.zeros(1))
    """
    return np.array(self._instances, dtype=Instance, copy=copy)

__bool__()

Returns True if len(self) > 1

descriptors = [list(range(d, d + 5)) for d in range(10)] archive = Archive(threshold=0.0, instances=descriptors) empty_archive = Archive(threshold=0.0)

assert archive assert not empty_archive

Source code in digneapy/archives/_base_archive.py
107
108
109
110
111
112
113
114
115
116
117
def __bool__(self):
    """Returns True if len(self) > 1

    >>> descriptors = [list(range(d, d + 5)) for d in range(10)]
    >>> archive = Archive(threshold=0.0, instances=descriptors)
    >>> empty_archive = Archive(threshold=0.0)

    >>> assert archive
    >>> assert not empty_archive
    """
    return len(self) != 0

__eq__(other)

Compares whether to Archives are equal

import copy variables = [list(range(d, d + 5)) for d in range(10)] instances = [Instance(variables=v, s=1.0) for v in variables] archive = Archive(threshold=0.0, instances=instances) empty_archive = Archive(threshold=0.0)

a1 = copy.copy(archive) assert a1 == archive assert empty_archive != archive

Source code in digneapy/archives/_base_archive.py
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def __eq__(self, other):
    """Compares whether to Archives are equal

    >>> import copy
    >>> variables = [list(range(d, d + 5)) for d in range(10)]
    >>> instances = [Instance(variables=v, s=1.0) for v in variables]
    >>> archive = Archive(threshold=0.0, instances=instances)
    >>> empty_archive = Archive(threshold=0.0)

    >>> a1 = copy.copy(archive)
    >>> assert a1 == archive
    >>> assert empty_archive != archive
    """
    return len(self) == len(other) and all(a == b for a, b in zip(self, other))

__init__(threshold, instances=None, dtype=np.float64)

Creates an instance of a Archive (unstructured) for QD algorithms

Parameters:
  • threshold (float) –

    Minimum value of sparseness to include an Instance into the archive.

  • instances (Iterable[Instance], default: None ) –

    Instances to initialise the archive. Defaults to None.

Source code in digneapy/archives/_base_archive.py
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def __init__(
    self,
    threshold: float,
    instances: Optional[Iterable[Instance]] = None,
    dtype=np.float64,
):
    """Creates an instance of a Archive (unstructured) for QD algorithms

    Args:
        threshold (float): Minimum value of sparseness to include an Instance into the archive.
        instances (Iterable[Instance], optional): Instances to initialise the archive. Defaults to None.
    """
    if instances:
        self._instances = list(i for i in instances)
    else:
        self._instances = []

    self._threshold = threshold
    self._dtype = dtype

extend(iterable)

Extends the current archive with all the individuals inside iterable that have a sparseness value greater than the archive threshold.

Parameters:
  • iterable (Iterable[Instance]) –

    Iterable of instances to be include in the archive.

Source code in digneapy/archives/_base_archive.py
133
134
135
136
137
138
139
140
def extend(self, iterable: Iterable[Instance]):
    """Extends the current archive with all the individuals inside iterable that have
    a sparseness value greater than the archive threshold.

    Args:
        iterable (Iterable[Instance]): Iterable of instances to be include in the archive.
    """
    self.instances.extend(i for i in iterable if i.s >= self._threshold)

to_json()

Converts the archive into a JSON object

Returns:
  • str( str ) –

    JSON str of the archive content

Source code in digneapy/archives/_base_archive.py
156
157
158
159
160
161
162
163
def to_json(self) -> str:
    """Converts the archive into a JSON object

    Returns:
        str: JSON str of the archive content
    """

    return json.dumps(self.asdict(), indent=4)