@File : instance.py @Time : 2024/06/07 14:09:43 @Author : Alejandro Marrero @Version : 1.0 @Contact : amarrerd@ull.edu.es @License : (C)Copyright 2024, Alejandro Marrero @Desc : None

Instance

Source code in digneapy/_core/_instance.py
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
class Instance:
    __slots__ = ("_vars", "_fit", "_p", "_s", "_features", "_desc", "_pscores")

    def __init__(
        self,
        variables: Optional[npt.ArrayLike] = None,
        fitness: float = 0.0,
        p: float = 0.0,
        s: float = 0.0,
        features: Optional[tuple[float]] = None,
        descriptor: Optional[tuple[float]] = None,
        portfolio_scores: Optional[tuple[float]] = None,
    ):
        """Creates an instance of a Instance (unstructured) for QD algorithms
        This class is used to represent a solution in a QD algorithm. It contains the
        variables, fitness, performance, novelty, features, descriptor and portfolio scores
        of the solution.
        The variables are stored as a numpy array, and the fitness, performance and novelty
        are stored as floats. The features, descriptor and portfolio scores are stored as
        numpy arrays.

        Args:
            variables (Optional[npt.ArrayLike], optional): Variables or genome of the instance. Defaults to None.
            fitness (float, optional): Fitness of the instance. Defaults to 0.0.
            p (float, optional): Performance score. Defaults to 0.0.
            s (float, optional): Novelty score. Defaults to 0.0.
            features (Optional[tuple[float]], optional): Tuple of features extracted from the domain. Defaults to None.
            descriptor (Optional[tuple[float]], optional): Tuple with the descriptor information of the instance. Defaults to None.
            portfolio_scores (Optional[tuple[float]], optional): Scores of the solvers in the portfolio. Defaults to None.

        Raises:
            ValueError: If fitness, p or s are not convertible to float.
        """
        try:
            fitness = float(fitness)
            p = float(p)
            s = float(s)
        except ValueError:
            raise ValueError(
                "The fitness, p and s parameters must be convertible to float"
            )

        self._vars = np.array(variables) if variables is not None else np.empty(0)
        self._fit = fitness
        self._p = p
        self._s = s
        self._features = np.array(features) if features is not None else np.empty(0)
        self._pscores = (
            np.array(portfolio_scores) if portfolio_scores is not None else np.empty(0)
        )
        self._desc = np.array(descriptor) if descriptor is not None else np.empty(0)

    def clone(self) -> Self:
        """Create a clone of the current instance. More efficient than using copy.deepcopy.

        Returns:
            Self: Instance object
        """
        return Instance(
            variables=list(self._vars),
            fitness=self._fit,
            p=self._p,
            s=self._s,
            features=tuple(self._features),
            portfolio_scores=tuple(self._pscores),
            descriptor=tuple(self._desc),
        )

    @property
    def variables(self):
        return self._vars

    @property
    def p(self) -> float:
        return self._p

    @p.setter
    def p(self, performance: float):
        try:
            performance = float(performance)
        except ValueError:
            # if performance != 0.0 and not float(performance):
            msg = f"The performance value {performance} is not a float in 'p' setter of class {self.__class__.__name__}"
            raise ValueError(msg)
        self._p = performance

    @property
    def s(self) -> float:
        return self._s

    @s.setter
    def s(self, novelty: float):
        try:
            novelty = float(novelty)
        except ValueError:
            # if novelty != 0.0 and not float(novelty):
            msg = f"The novelty value {novelty} is not a float in 's' setter of class {self.__class__.__name__}"
            raise ValueError(msg)
        self._s = novelty

    @property
    def fitness(self) -> float:
        return self._fit

    @fitness.setter
    def fitness(self, f: float):
        try:
            f = float(f)
        except ValueError:
            # if f != 0.0 and not float(f):
            msg = f"The fitness value {f} is not a float in fitness setter of class {self.__class__.__name__}"
            raise ValueError(msg)

        self._fit = f

    @property
    def features(self) -> np.ndarray:
        return self._features

    @features.setter
    def features(self, features: npt.ArrayLike):
        self._features = np.asarray(features)

    @property
    def descriptor(self) -> np.ndarray:
        return self._desc

    @descriptor.setter
    def descriptor(self, desc: npt.ArrayLike):
        self._desc = np.array(desc)

    @property
    def portfolio_scores(self):
        return self._pscores

    @portfolio_scores.setter
    def portfolio_scores(self, p: npt.ArrayLike):
        self._pscores = np.asarray(p)

    def __repr__(self):
        return f"Instance<f={self.fitness},p={self.p},s={self.s},vars={len(self._vars)},features={len(self.features)},descriptor={len(self.descriptor)},performance={len(self.portfolio_scores)}>"

    def __str__(self):
        import reprlib

        descriptor = reprlib.repr(self.descriptor)
        performance = reprlib.repr(self.portfolio_scores)
        performance = performance[performance.find("(") : performance.rfind(")") + 1]
        return f"Instance(f={self.fitness},p={self.p},s={self.s},features={len(self.features)},descriptor={descriptor},performance={performance})"

    def __iter__(self):
        return iter(self._vars)

    def __len__(self):
        return len(self._vars)

    def __getitem__(self, key):
        if isinstance(key, slice):
            cls = type(self)  # To facilitate subclassing
            return cls(self._vars[key])
        index = operator.index(key)
        return self._vars[index]

    def __setitem__(self, key, value):
        self._vars[key] = value

    def __eq__(self, other):
        if not isinstance(other, Instance):
            print(
                f"Other of type {other.__class__.__name__} can not be compared with with {self.__class__.__name__}"
            )
            return NotImplemented

        else:
            try:
                return all(a == b for a, b in zip(self, other, strict=True))
            except ValueError:
                return False

    def __gt__(self, other):
        if not isinstance(other, Instance):
            print(
                f"Other of type {other.__class__.__name__} can not be compared with with {self.__class__.__name__}"
            )
            return NotImplemented

        return self.fitness > other.fitness

    def __ge__(self, other):
        if not isinstance(other, Instance):
            print(
                f"Other of type {other.__class__.__name__} can not be compared with with {self.__class__.__name__}"
            )
            return NotImplemented

        return self.fitness >= other.fitness

    def __hash__(self):
        from functools import reduce

        hashes = (hash(x) for x in self)
        return reduce(operator.or_, hashes, 0)

    def __bool__(self):
        return self._vars.size != 0

    def __format__(self, fmt_spec=""):
        if fmt_spec.endswith("p"):
            # We are showing only the performances
            fmt_spec = fmt_spec[:-1]
            components = self.portfolio_scores
        else:
            fmt_spec = fmt_spec[:-1]
            components = self.descriptor

        components = (format(c, fmt_spec) for c in components)
        decriptor = "descriptor=({})".format(",".join(components))
        msg = f"Instance(f={self.fitness},p={format(self.p, fmt_spec)}, s={format(self.s, fmt_spec)}, {decriptor})"

        return msg

    def asdict(
        self,
        variables_names: Optional[Sequence[str]] = None,
        features_names: Optional[Sequence[str]] = None,
        score_names: Optional[Sequence[str]] = None,
    ) -> dict:
        """Convert the instance to a dictionary. The keys are the names of the attributes
        and the values are the values of the attributes.

        Args:
            variables_names (Optional[Sequence[str]], optional): Names of the variables in the dictionary, otherwise v_i. Defaults to None.
            features_names (Optional[Sequence[str]], optional): Name of the features in the dictionary, otherwise f_i. Defaults to None.
            score_names (Optional[Sequence[str]], optional): Name of the solvers, otherwise solver_i. Defaults to None.

        Returns:
            dict: Dictionary with the attributes of the instance as keys and the values of the attributes as values.
        """
        sckeys = (
            [f"solver_{i}" for i in range(len(self._pscores))]
            if score_names is None
            else score_names
        )
        _data = {
            "fitness": self._fit,
            "s": self._s,
            "p": self._p,
            "portfolio_scores": {sk: v for sk, v in zip(sckeys, self._pscores)},
        }

        if len(self._desc) not in (
            len(self._vars),
            len(self._features),
            len(self._pscores),
        ):  # Transformed descriptor
            _data["descriptor"] = {f"d{i}": v for i, v in enumerate(self._desc)}
        if len(self.features) != 0:
            f_keys = (
                [f"f{i}" for i in range(len(self._features))]
                if features_names is None or len(features_names) == 0
                else features_names
            )
            _data["features"] = {fk: v for fk, v in zip(f_keys, self._features)}

        if variables_names:
            if len(variables_names) != len(self._vars):
                print(
                    f"Error in asdict(). len(variables_names) = {len(variables_names)} != len(variables) ({len(self._vars)}). Fallback to v#"
                )
                _data["variables"] = {f"v{i}": v for i, v in enumerate(self._vars)}
            else:
                _data["variables"] = {
                    vk: v for vk, v in zip(variables_names, self._vars)
                }

        else:
            _data["variables"] = {f"v{i}": v for i, v in enumerate(self._vars)}

        return _data

    def to_json(self) -> str:
        """Convert the instance to a JSON string. The keys are the names of the attributes
        and the values are the values of the attributes.

        Returns:
            str: JSON string with the attributes of the instance as keys and the values of the attributes as values.
        """
        import json

        return json.dumps(self.asdict(), sort_keys=True, indent=4)

    def to_series(
        self,
        variables_names: Optional[Sequence[str]] = None,
        features_names: Optional[Sequence[str]] = None,
        score_names: Optional[Sequence[str]] = None,
    ) -> pd.Series:
        """Creates a pandas Series from the instance.

        Args:
            variables_names (Optional[Sequence[str]], optional): Names of the variables in the dictionary, otherwise v_i. Defaults to None.
            features_names (Optional[Sequence[str]], optional): Name of the features in the dictionary, otherwise f_i. Defaults to None.
            score_names (Optional[Sequence[str]], optional): Name of the solvers, otherwise solver_i. Defaults to None.

        Returns:
            pd.Series: Pandas Series with the attributes of the instance as keys and the values of the attributes as values.
        """
        _flatten_data = {}
        for key, value in self.asdict(
            variables_names=variables_names,
            features_names=features_names,
            score_names=score_names,
        ).items():
            if isinstance(value, dict):  # Flatten nested dicts
                for sub_key, sub_value in value.items():
                    _flatten_data[f"{sub_key}"] = sub_value
            else:
                _flatten_data[key] = value
        return pd.Series(_flatten_data)

__init__(variables=None, fitness=0.0, p=0.0, s=0.0, features=None, descriptor=None, portfolio_scores=None)

Creates an instance of a Instance (unstructured) for QD algorithms This class is used to represent a solution in a QD algorithm. It contains the variables, fitness, performance, novelty, features, descriptor and portfolio scores of the solution. The variables are stored as a numpy array, and the fitness, performance and novelty are stored as floats. The features, descriptor and portfolio scores are stored as numpy arrays.

Parameters:
  • variables (Optional[ArrayLike], default: None ) –

    Variables or genome of the instance. Defaults to None.

  • fitness (float, default: 0.0 ) –

    Fitness of the instance. Defaults to 0.0.

  • p (float, default: 0.0 ) –

    Performance score. Defaults to 0.0.

  • s (float, default: 0.0 ) –

    Novelty score. Defaults to 0.0.

  • features (Optional[tuple[float]], default: None ) –

    Tuple of features extracted from the domain. Defaults to None.

  • descriptor (Optional[tuple[float]], default: None ) –

    Tuple with the descriptor information of the instance. Defaults to None.

  • portfolio_scores (Optional[tuple[float]], default: None ) –

    Scores of the solvers in the portfolio. Defaults to None.

Raises:
  • ValueError

    If fitness, p or s are not convertible to float.

Source code in digneapy/_core/_instance.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def __init__(
    self,
    variables: Optional[npt.ArrayLike] = None,
    fitness: float = 0.0,
    p: float = 0.0,
    s: float = 0.0,
    features: Optional[tuple[float]] = None,
    descriptor: Optional[tuple[float]] = None,
    portfolio_scores: Optional[tuple[float]] = None,
):
    """Creates an instance of a Instance (unstructured) for QD algorithms
    This class is used to represent a solution in a QD algorithm. It contains the
    variables, fitness, performance, novelty, features, descriptor and portfolio scores
    of the solution.
    The variables are stored as a numpy array, and the fitness, performance and novelty
    are stored as floats. The features, descriptor and portfolio scores are stored as
    numpy arrays.

    Args:
        variables (Optional[npt.ArrayLike], optional): Variables or genome of the instance. Defaults to None.
        fitness (float, optional): Fitness of the instance. Defaults to 0.0.
        p (float, optional): Performance score. Defaults to 0.0.
        s (float, optional): Novelty score. Defaults to 0.0.
        features (Optional[tuple[float]], optional): Tuple of features extracted from the domain. Defaults to None.
        descriptor (Optional[tuple[float]], optional): Tuple with the descriptor information of the instance. Defaults to None.
        portfolio_scores (Optional[tuple[float]], optional): Scores of the solvers in the portfolio. Defaults to None.

    Raises:
        ValueError: If fitness, p or s are not convertible to float.
    """
    try:
        fitness = float(fitness)
        p = float(p)
        s = float(s)
    except ValueError:
        raise ValueError(
            "The fitness, p and s parameters must be convertible to float"
        )

    self._vars = np.array(variables) if variables is not None else np.empty(0)
    self._fit = fitness
    self._p = p
    self._s = s
    self._features = np.array(features) if features is not None else np.empty(0)
    self._pscores = (
        np.array(portfolio_scores) if portfolio_scores is not None else np.empty(0)
    )
    self._desc = np.array(descriptor) if descriptor is not None else np.empty(0)

asdict(variables_names=None, features_names=None, score_names=None)

Convert the instance to a dictionary. The keys are the names of the attributes and the values are the values of the attributes.

Parameters:
  • variables_names (Optional[Sequence[str]], default: None ) –

    Names of the variables in the dictionary, otherwise v_i. Defaults to None.

  • features_names (Optional[Sequence[str]], default: None ) –

    Name of the features in the dictionary, otherwise f_i. Defaults to None.

  • score_names (Optional[Sequence[str]], default: None ) –

    Name of the solvers, otherwise solver_i. Defaults to None.

Returns:
  • dict( dict ) –

    Dictionary with the attributes of the instance as keys and the values of the attributes as values.

Source code in digneapy/_core/_instance.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def asdict(
    self,
    variables_names: Optional[Sequence[str]] = None,
    features_names: Optional[Sequence[str]] = None,
    score_names: Optional[Sequence[str]] = None,
) -> dict:
    """Convert the instance to a dictionary. The keys are the names of the attributes
    and the values are the values of the attributes.

    Args:
        variables_names (Optional[Sequence[str]], optional): Names of the variables in the dictionary, otherwise v_i. Defaults to None.
        features_names (Optional[Sequence[str]], optional): Name of the features in the dictionary, otherwise f_i. Defaults to None.
        score_names (Optional[Sequence[str]], optional): Name of the solvers, otherwise solver_i. Defaults to None.

    Returns:
        dict: Dictionary with the attributes of the instance as keys and the values of the attributes as values.
    """
    sckeys = (
        [f"solver_{i}" for i in range(len(self._pscores))]
        if score_names is None
        else score_names
    )
    _data = {
        "fitness": self._fit,
        "s": self._s,
        "p": self._p,
        "portfolio_scores": {sk: v for sk, v in zip(sckeys, self._pscores)},
    }

    if len(self._desc) not in (
        len(self._vars),
        len(self._features),
        len(self._pscores),
    ):  # Transformed descriptor
        _data["descriptor"] = {f"d{i}": v for i, v in enumerate(self._desc)}
    if len(self.features) != 0:
        f_keys = (
            [f"f{i}" for i in range(len(self._features))]
            if features_names is None or len(features_names) == 0
            else features_names
        )
        _data["features"] = {fk: v for fk, v in zip(f_keys, self._features)}

    if variables_names:
        if len(variables_names) != len(self._vars):
            print(
                f"Error in asdict(). len(variables_names) = {len(variables_names)} != len(variables) ({len(self._vars)}). Fallback to v#"
            )
            _data["variables"] = {f"v{i}": v for i, v in enumerate(self._vars)}
        else:
            _data["variables"] = {
                vk: v for vk, v in zip(variables_names, self._vars)
            }

    else:
        _data["variables"] = {f"v{i}": v for i, v in enumerate(self._vars)}

    return _data

clone()

Create a clone of the current instance. More efficient than using copy.deepcopy.

Returns:
  • Self( Self ) –

    Instance object

Source code in digneapy/_core/_instance.py
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
def clone(self) -> Self:
    """Create a clone of the current instance. More efficient than using copy.deepcopy.

    Returns:
        Self: Instance object
    """
    return Instance(
        variables=list(self._vars),
        fitness=self._fit,
        p=self._p,
        s=self._s,
        features=tuple(self._features),
        portfolio_scores=tuple(self._pscores),
        descriptor=tuple(self._desc),
    )

to_json()

Convert the instance to a JSON string. The keys are the names of the attributes and the values are the values of the attributes.

Returns:
  • str( str ) –

    JSON string with the attributes of the instance as keys and the values of the attributes as values.

Source code in digneapy/_core/_instance.py
301
302
303
304
305
306
307
308
309
310
def to_json(self) -> str:
    """Convert the instance to a JSON string. The keys are the names of the attributes
    and the values are the values of the attributes.

    Returns:
        str: JSON string with the attributes of the instance as keys and the values of the attributes as values.
    """
    import json

    return json.dumps(self.asdict(), sort_keys=True, indent=4)

to_series(variables_names=None, features_names=None, score_names=None)

Creates a pandas Series from the instance.

Parameters:
  • variables_names (Optional[Sequence[str]], default: None ) –

    Names of the variables in the dictionary, otherwise v_i. Defaults to None.

  • features_names (Optional[Sequence[str]], default: None ) –

    Name of the features in the dictionary, otherwise f_i. Defaults to None.

  • score_names (Optional[Sequence[str]], default: None ) –

    Name of the solvers, otherwise solver_i. Defaults to None.

Returns:
  • Series

    pd.Series: Pandas Series with the attributes of the instance as keys and the values of the attributes as values.

Source code in digneapy/_core/_instance.py
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
def to_series(
    self,
    variables_names: Optional[Sequence[str]] = None,
    features_names: Optional[Sequence[str]] = None,
    score_names: Optional[Sequence[str]] = None,
) -> pd.Series:
    """Creates a pandas Series from the instance.

    Args:
        variables_names (Optional[Sequence[str]], optional): Names of the variables in the dictionary, otherwise v_i. Defaults to None.
        features_names (Optional[Sequence[str]], optional): Name of the features in the dictionary, otherwise f_i. Defaults to None.
        score_names (Optional[Sequence[str]], optional): Name of the solvers, otherwise solver_i. Defaults to None.

    Returns:
        pd.Series: Pandas Series with the attributes of the instance as keys and the values of the attributes as values.
    """
    _flatten_data = {}
    for key, value in self.asdict(
        variables_names=variables_names,
        features_names=features_names,
        score_names=score_names,
    ).items():
        if isinstance(value, dict):  # Flatten nested dicts
            for sub_key, sub_value in value.items():
                _flatten_data[f"{sub_key}"] = sub_value
        else:
            _flatten_data[key] = value
    return pd.Series(_flatten_data)